Download link
File List
-
36. Kernel PCA/3. Kernel PCA in R.mp4 56.57 MB
1. Welcome to the course!/5. Updates on Udemy Reviews.mp4 52.92 MB
12. Logistic Regression/13. Logistic Regression in R - Step 5.mp4 51.68 MB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4 51.29 MB
17. Decision Tree Classification/4. Decision Tree Classification in R.mp4 51.18 MB
18. Random Forest Classification/4. Random Forest Classification in R.mp4 49.39 MB
31. Artificial Neural Networks/13. ANN in Python - Step 2.mp4 48.1 MB
39. XGBoost/4. XGBoost in R.mp4 47.27 MB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.mp4 47.21 MB
18. Random Forest Classification/3. Random Forest Classification in Python.mp4 47.16 MB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.mp4 46.86 MB
7. Support Vector Regression (SVR)/2. SVR Intuition.mp4 46.59 MB
7. Support Vector Regression (SVR)/3. SVR in Python.mp4 46.19 MB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4 45.42 MB
8. Decision Tree Regression/4. Decision Tree Regression in R.mp4 44.38 MB
16. Naive Bayes/1. Bayes Theorem.mp4 43.9 MB
24. Apriori/5. Apriori in R - Step 3.mp4 43.84 MB
38. Model Selection/3. k-Fold Cross Validation in R.mp4 43.63 MB
6. Polynomial Regression/10. Polynomial Regression in R - Step 3.mp4 43.32 MB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4 43.13 MB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.mp4 42.98 MB
24. Apriori/3. Apriori in R - Step 1.mp4 42.88 MB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4 42.74 MB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4 42.56 MB
15. Kernel SVM/6. Kernel SVM in Python.mp4 41.63 MB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4 41.38 MB
29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.mp4 41.19 MB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4 41.12 MB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.mp4 40.94 MB
2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.mp4 40.8 MB
15. Kernel SVM/7. Kernel SVM in R.mp4 40.45 MB
29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.mp4 40.37 MB
9. Random Forest Regression/4. Random Forest Regression in R.mp4 40.35 MB
32. Convolutional Neural Networks/5. Step 2 - Pooling.mp4 40.24 MB
21. K-Means Clustering/5. K-Means Clustering in Python.mp4 39.77 MB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 39.73 MB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4 39.57 MB
29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.mp4 39.49 MB
9. Random Forest Regression/3. Random Forest Regression in Python.mp4 39.48 MB
2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.mp4 39.04 MB
31. Artificial Neural Networks/22. ANN in R - Step 1.mp4 38.55 MB
38. Model Selection/4. Grid Search in Python - Step 1.mp4 38.22 MB
24. Apriori/6. Apriori in Python - Step 1.mp4 37.98 MB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4 37.37 MB
16. Naive Bayes/7. Naive Bayes in R.mp4 37.32 MB
28. Thompson Sampling/1. Thompson Sampling Intuition.mp4 37.28 MB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.mp4 36.74 MB
38. Model Selection/6. Grid Search in R.mp4 35.55 MB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4 35.45 MB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4 35.22 MB
29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.mp4 35.21 MB
24. Apriori/1. Apriori Intuition.mp4 35.03 MB
2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.mp4 34.62 MB
8. Decision Tree Regression/3. Decision Tree Regression in Python.mp4 33.55 MB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).mp4 33.44 MB
36. Kernel PCA/2. Kernel PCA in Python.mp4 33.39 MB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4 33.23 MB
38. Model Selection/2. k-Fold Cross Validation in Python.mp4 32.83 MB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4 32.59 MB
14. Support Vector Machine (SVM)/4. SVM in R.mp4 32.27 MB
2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.mp4 32.16 MB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4 32.12 MB
39. XGBoost/3. XGBoost in Python - Step 2.mp4 31.97 MB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4 31.96 MB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4 31.54 MB
30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.mp4 31.32 MB
14. Support Vector Machine (SVM)/3. SVM in Python.mp4 31.17 MB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4 31.03 MB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.mp4 30.82 MB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.mp4 30.66 MB
24. Apriori/4. Apriori in R - Step 2.mp4 30.5 MB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4 30.19 MB
31. Artificial Neural Networks/2. The Neuron.mp4 29.86 MB
17. Decision Tree Classification/3. Decision Tree Classification in Python.mp4 29.8 MB
29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.mp4 29.69 MB
31. Artificial Neural Networks/16. ANN in Python - Step 5.mp4 29.58 MB
24. Apriori/7. Apriori in Python - Step 2.mp4 29.53 MB
38. Model Selection/5. Grid Search in Python - Step 2.mp4 29.51 MB
32. Convolutional Neural Networks/2. What are convolutional neural networks.mp4 29.51 MB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4 29.33 MB
31. Artificial Neural Networks/12. ANN in Python - Step 1.mp4 29.31 MB
15. Kernel SVM/3. The Kernel Trick.mp4 29.28 MB
12. Logistic Regression/1. Logistic Regression Intuition.mp4 29.18 MB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.mp4 29.02 MB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.mp4 29.01 MB
21. K-Means Clustering/6. K-Means Clustering in R.mp4 29 MB
29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.mp4 28.99 MB
31. Artificial Neural Networks/24. ANN in R - Step 3.mp4 28.94 MB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.mp4 28.83 MB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.mp4 28.05 MB
16. Naive Bayes/2. Naive Bayes Intuition.mp4 27.79 MB
6. Polynomial Regression/7. Python Regression Template.mp4 27.43 MB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.mp4 27.18 MB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 27.18 MB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.mp4 27.11 MB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4 26.99 MB
24. Apriori/8. Apriori in Python - Step 3.mp4 26.96 MB
21. K-Means Clustering/1. K-Means Clustering Intuition.mp4 26.87 MB
31. Artificial Neural Networks/5. How do Neural Networks learn.mp4 26.56 MB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.mp4 25.93 MB
7. Support Vector Regression (SVR)/4. SVR in R.mp4 25.87 MB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.mp4 25.51 MB
6. Polynomial Regression/12. R Regression Template.mp4 25.42 MB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.mp4 24.93 MB
6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.mp4 24.9 MB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.mp4 24.21 MB
29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.mp4 24.13 MB
29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.mp4 24 MB
6. Polynomial Regression/9. Polynomial Regression in R - Step 2.mp4 23.88 MB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 23.83 MB
31. Artificial Neural Networks/4. How do Neural Networks work.mp4 23.54 MB
16. Naive Bayes/6. Naive Bayes in Python.mp4 23.39 MB
2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.mp4 23.31 MB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4 23.13 MB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.mp4 22.82 MB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4 22.7 MB
6. Polynomial Regression/11. Polynomial Regression in R - Step 4.mp4 22.34 MB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4 22.08 MB
29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.mp4 21.96 MB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.mp4 21.89 MB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.mp4 21.73 MB
39. XGBoost/2. XGBoost in Python - Step 1.mp4 21.39 MB
2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.mp4 21.15 MB
25. Eclat/3. Eclat in R.mp4 20.68 MB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.mp4 20.6 MB
2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.mp4 19.67 MB
1. Welcome to the course!/6. Installing Python and Anaconda (Mac, Linux & Windows).mp4 19.52 MB
18. Random Forest Classification/1. Random Forest Classification Intuition.mp4 19.44 MB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4 19.29 MB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4 18.94 MB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4 18.8 MB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.mp4 18.75 MB
19. Evaluating Classification Models Performance/4. CAP Curve.mp4 18.68 MB
31. Artificial Neural Networks/6. Gradient Descent.mp4 18.54 MB
31. Artificial Neural Networks/19. ANN in Python - Step 8.mp4 18.16 MB
14. Support Vector Machine (SVM)/1. SVM Intuition.mp4 18.01 MB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.mp4 17.94 MB
6. Polynomial Regression/8. Polynomial Regression in R - Step 1.mp4 17.78 MB
1. Welcome to the course!/8. Installing R and R Studio (Mac, Linux & Windows).mp4 17.55 MB
29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.mp4 17.47 MB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.mp4 17.46 MB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 17.25 MB
29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.mp4 17.11 MB
31. Artificial Neural Networks/21. ANN in Python - Step 10.mp4 17.09 MB
31. Artificial Neural Networks/20. ANN in Python - Step 9.mp4 16.89 MB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4 16.83 MB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.mp4 16.53 MB
31. Artificial Neural Networks/10. Business Problem Description.mp4 16.37 MB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.mp4 15.61 MB
21. K-Means Clustering/2. K-Means Random Initialization Trap.mp4 15.37 MB
29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.mp4 14.9 MB
31. Artificial Neural Networks/3. The Activation Function.mp4 14.76 MB
12. Logistic Regression/11. Logistic Regression in R - Step 3.mp4 14.59 MB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4 14.36 MB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4 14.3 MB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.mp4 14.28 MB
31. Artificial Neural Networks/23. ANN in R - Step 2.mp4 14.18 MB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4 14.09 MB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14.09 MB
29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.mp4 14.01 MB
9. Random Forest Regression/1. Random Forest Regression Intuition.mp4 13.82 MB
15. Kernel SVM/2. Mapping to a higher dimension.mp4 13.74 MB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4 13.65 MB
29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.mp4 13.52 MB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.mp4 13.5 MB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.vtt 13.46 MB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4 13.28 MB
29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.mp4 13.27 MB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.mp4 12.93 MB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4 12.93 MB
1. Welcome to the course!/2. Why Machine Learning is the Future.mp4 12.82 MB
29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.mp4 12.73 MB
22. Hierarchical Clustering/6. HC in Python - Step 2.mp4 12.65 MB
12. Logistic Regression/9. Logistic Regression in R - Step 1.mp4 12.58 MB
12. Logistic Regression/14. R Classification Template.mp4 12.47 MB
22. Hierarchical Clustering/7. HC in Python - Step 3.mp4 12.31 MB
15. Kernel SVM/4. Types of Kernel Functions.mp4 12.3 MB
12. Logistic Regression/8. Python Classification Template.mp4 12.07 MB
22. Hierarchical Clustering/8. HC in Python - Step 4.mp4 12.02 MB
14. Support Vector Machine (SVM)/2. How to get the dataset.mp4 11.72 MB
18. Random Forest Classification/2. How to get the dataset.mp4 11.72 MB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.mp4 11.72 MB
28. Thompson Sampling/3. How to get the dataset.mp4 11.72 MB
32. Convolutional Neural Networks/10. How to get the dataset.mp4 11.72 MB
34. Principal Component Analysis (PCA)/2. How to get the dataset.mp4 11.72 MB
36. Kernel PCA/1. How to get the dataset.mp4 11.72 MB
39. XGBoost/1. How to get the dataset.mp4 11.72 MB
4. Simple Linear Regression/1. How to get the dataset.mp4 11.72 MB
6. Polynomial Regression/2. How to get the dataset.mp4 11.72 MB
7. Support Vector Regression (SVR)/1. How to get the dataset.mp4 11.72 MB
8. Decision Tree Regression/2. How to get the dataset.mp4 11.72 MB
9. Random Forest Regression/2. How to get the dataset.mp4 11.72 MB
12. Logistic Regression/2. How to get the dataset.mp4 11.71 MB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.mp4 11.71 MB
15. Kernel SVM/5. How to get the dataset.mp4 11.71 MB
16. Naive Bayes/5. How to get the dataset.mp4 11.71 MB
17. Decision Tree Classification/2. How to get the dataset.mp4 11.71 MB
21. K-Means Clustering/4. How to get the dataset.mp4 11.71 MB
22. Hierarchical Clustering/4. How to get the dataset.mp4 11.71 MB
24. Apriori/2. How to get the dataset.mp4 11.71 MB
25. Eclat/2. How to get the dataset.mp4 11.71 MB
29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.mp4 11.71 MB
31. Artificial Neural Networks/9. How to get the dataset.mp4 11.71 MB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.mp4 11.71 MB
38. Model Selection/1. How to get the dataset.mp4 11.71 MB
5. Multiple Linear Regression/1. How to get the dataset.mp4 11.71 MB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4 11.51 MB
22. Hierarchical Clustering/11. HC in R - Step 2.mp4 11.15 MB
2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.mp4 11.07 MB
31. Artificial Neural Networks/8. Backpropagation.mp4 10.93 MB
22. Hierarchical Clustering/5. HC in Python - Step 1.mp4 10.73 MB
25. Eclat/1. Eclat Intuition.mp4 10.65 MB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.mp4 10.42 MB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4 10.37 MB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.mp4 9.98 MB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.mp4 9.91 MB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.mp4 9.71 MB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4 9.53 MB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.mp4 9.47 MB
6. Polynomial Regression/1. Polynomial Regression Intuition.mp4 9.44 MB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4 9.27 MB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4 9.13 MB
31. Artificial Neural Networks/18. ANN in Python - Step 7.mp4 8.99 MB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4 8.86 MB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4 8.64 MB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4 8.41 MB
22. Hierarchical Clustering/9. HC in Python - Step 5.mp4 8.4 MB
31. Artificial Neural Networks/14. ANN in Python - Step 3.mp4 8.37 MB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4 8.23 MB
19. Evaluating Classification Models Performance/2. Confusion Matrix.mp4 8.21 MB
1. Welcome to the course!/1. Applications of Machine Learning.mp4 7.99 MB
32. Convolutional Neural Networks/8. Summary.mp4 7.91 MB
12. Logistic Regression/10. Logistic Regression in R - Step 2.mp4 7.84 MB
22. Hierarchical Clustering/12. HC in R - Step 3.mp4 7.81 MB
29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.mp4 7.51 MB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.mp4 7.47 MB
22. Hierarchical Clustering/13. HC in R - Step 4.mp4 7.44 MB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.mp4 7.41 MB
22. Hierarchical Clustering/10. HC in R - Step 1.mp4 7.38 MB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4 7.22 MB
31. Artificial Neural Networks/17. ANN in Python - Step 6.mp4 7.06 MB
12. Logistic Regression/12. Logistic Regression in R - Step 4.mp4 6.9 MB
22. Hierarchical Clustering/14. HC in R - Step 5.mp4 6.88 MB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.mp4 6.79 MB
4. Simple Linear Regression/2. Dataset + Business Problem Description.mp4 6.63 MB
29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.mp4 6.51 MB
29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.mp4 6.49 MB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4 5.97 MB
32. Convolutional Neural Networks/1. Plan of attack.mp4 5.9 MB
31. Artificial Neural Networks/15. ANN in Python - Step 4.mp4 5.88 MB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.mp4 5.85 MB
15. Kernel SVM/1. Kernel SVM Intuition.mp4 5.79 MB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.mp4 5.37 MB
31. Artificial Neural Networks/1. Plan of attack.mp4 4.74 MB
29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.mp4 4.57 MB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.mp4 4.52 MB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4 3.8 MB
29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.mp4 3.39 MB
32. Convolutional Neural Networks/6. Step 3 - Flattening.mp4 3.28 MB
2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.mp4 2.98 MB
1. Welcome to the course!/4.1 Machine_Learning_A_Z_Q_A.pdf.pdf 2.26 MB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.mp4 2.22 MB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.mp4 1.82 MB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.mp4 1.78 MB
25. Eclat/3.1 Eclat.zip.zip 48.54 KB
16. Naive Bayes/1. Bayes Theorem.vtt 30.66 KB
18. Random Forest Classification/4. Random Forest Classification in R.vtt 28.85 KB
8. Decision Tree Regression/4. Decision Tree Regression in R.vtt 28.54 KB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.vtt 27.83 KB
24. Apriori/5. Apriori in R - Step 3.vtt 27.72 KB
24. Apriori/3. Apriori in R - Step 1.vtt 27.66 KB
7. Support Vector Regression (SVR)/3. SVR in Python.vtt 27.45 KB
6. Polynomial Regression/10. Polynomial Regression in R - Step 3.vtt 27.44 KB
18. Random Forest Classification/3. Random Forest Classification in Python.vtt 27.43 KB
36. Kernel PCA/3. Kernel PCA in R.vtt 26.63 KB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.vtt 26.48 KB
12. Logistic Regression/13. Logistic Regression in R - Step 5.vtt 26 KB
17. Decision Tree Classification/4. Decision Tree Classification in R.vtt 25.86 KB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.vtt 25.61 KB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.vtt 25.49 KB
21. K-Means Clustering/5. K-Means Clustering in Python.vtt 25.22 KB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.vtt 25.19 KB
9. Random Forest Regression/4. Random Forest Regression in R.vtt 25.1 KB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.vtt 25.08 KB
15. Kernel SVM/6. Kernel SVM in Python.vtt 24.98 KB
24. Apriori/6. Apriori in Python - Step 1.vtt 24.86 KB
31. Artificial Neural Networks/13. ANN in Python - Step 2.vtt 24.77 KB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.vtt 24.57 KB
9. Random Forest Regression/3. Random Forest Regression in Python.vtt 24.45 KB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.vtt 24.31 KB
38. Model Selection/3. k-Fold Cross Validation in R.vtt 24.24 KB
28. Thompson Sampling/1. Thompson Sampling Intuition.vtt 24.09 KB
2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.vtt 23.91 KB
2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.vtt 23.86 KB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.vtt 23.38 KB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.vtt 23.05 KB
31. Artificial Neural Networks/22. ANN in R - Step 1.vtt 23.03 KB
29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.vtt 22.89 KB
15. Kernel SVM/7. Kernel SVM in R.vtt 22.66 KB
24. Apriori/1. Apriori Intuition.vtt 22.59 KB
39. XGBoost/4. XGBoost in R.vtt 22.59 KB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.vtt 22.13 KB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.vtt 21.98 KB
31. Artificial Neural Networks/2. The Neuron.vtt 21.91 KB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.vtt 21.82 KB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.vtt 21.52 KB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.vtt 21.21 KB
8. Decision Tree Regression/3. Decision Tree Regression in Python.vtt 21.13 KB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.vtt 21.06 KB
29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.vtt 20.93 KB
21. K-Means Clustering/1. K-Means Clustering Intuition.vtt 20.91 KB
12. Logistic Regression/1. Logistic Regression Intuition.vtt 20.91 KB
16. Naive Bayes/2. Naive Bayes Intuition.vtt 20.89 KB
29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.vtt 20.8 KB
2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.vtt 20.79 KB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.vtt 20.68 KB
24. Apriori/4. Apriori in R - Step 2.vtt 20.59 KB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.vtt 20.41 KB
24. Apriori/7. Apriori in Python - Step 2.vtt 20.11 KB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.vtt 20.04 KB
16. Naive Bayes/7. Naive Bayes in R.vtt 19.45 KB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.vtt 19.44 KB
2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.vtt 19.43 KB
32. Convolutional Neural Networks/2. What are convolutional neural networks.vtt 19.34 KB
38. Model Selection/4. Grid Search in Python - Step 1.vtt 19.29 KB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.vtt 19.2 KB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.vtt 19.06 KB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.vtt 19.05 KB
36. Kernel PCA/2. Kernel PCA in Python.vtt 18.79 KB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.vtt 18.76 KB
32. Convolutional Neural Networks/5. Step 2 - Pooling.vtt 18.41 KB
38. Model Selection/6. Grid Search in R.vtt 18.26 KB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).vtt 17.95 KB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.vtt 17.91 KB
38. Model Selection/2. k-Fold Cross Validation in Python.vtt 17.62 KB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.vtt 17.57 KB
31. Artificial Neural Networks/12. ANN in Python - Step 1.vtt 17.41 KB
24. Apriori/8. Apriori in Python - Step 3.vtt 17.38 KB
21. K-Means Clustering/6. K-Means Clustering in R.vtt 17.34 KB
17. Decision Tree Classification/3. Decision Tree Classification in Python.vtt 17.21 KB
29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.vtt 17.18 KB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.vtt 17.1 KB
31. Artificial Neural Networks/16. ANN in Python - Step 5.vtt 17.06 KB
14. Support Vector Machine (SVM)/3. SVM in Python.vtt 16.91 KB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.vtt 16.89 KB
31. Artificial Neural Networks/4. How do Neural Networks work.vtt 16.84 KB
6. Polynomial Regression/12. R Regression Template.vtt 16.72 KB
7. Support Vector Regression (SVR)/4. SVR in R.vtt 16.61 KB
2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.vtt 16.59 KB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.vtt 16.55 KB
31. Artificial Neural Networks/5. How do Neural Networks learn.vtt 16.53 KB
39. XGBoost/3. XGBoost in Python - Step 2.vtt 16.4 KB
31. Artificial Neural Networks/24. ANN in R - Step 3.vtt 16.38 KB
14. Support Vector Machine (SVM)/4. SVM in R.vtt 16.36 KB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.vtt 16.36 KB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.vtt 16.16 KB
29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.vtt 15.95 KB
30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.vtt 15.89 KB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.vtt 15.86 KB
6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.vtt 15.69 KB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.vtt 15.42 KB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.vtt 15.33 KB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.vtt 15.25 KB
29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.vtt 15.17 KB
6. Polynomial Regression/7. Python Regression Template.vtt 14.67 KB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.vtt 14.64 KB
19. Evaluating Classification Models Performance/4. CAP Curve.vtt 14.55 KB
15. Kernel SVM/3. The Kernel Trick.vtt 14.43 KB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).vtt 14.29 KB
14. Support Vector Machine (SVM)/1. SVM Intuition.vtt 14.19 KB
25. Eclat/3. Eclat in R.vtt 14.11 KB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.vtt 13.88 KB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.vtt 13.83 KB
6. Polynomial Regression/11. Polynomial Regression in R - Step 4.vtt 13.75 KB
29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.vtt 13.74 KB
6. Polynomial Regression/9. Polynomial Regression in R - Step 2.vtt 13.72 KB
38. Model Selection/5. Grid Search in Python - Step 2.vtt 13.28 KB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.vtt 13.13 KB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.vtt 13.12 KB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.vtt 12.99 KB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.vtt 12.94 KB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.vtt 12.84 KB
2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.vtt 12.67 KB
6. Polynomial Regression/8. Polynomial Regression in R - Step 1.vtt 12.66 KB
29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.vtt 12.49 KB
31. Artificial Neural Networks/6. Gradient Descent.vtt 12.26 KB
16. Naive Bayes/6. Naive Bayes in Python.vtt 12.22 KB
39. XGBoost/2. XGBoost in Python - Step 1.vtt 12.05 KB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.vtt 12.02 KB
21. K-Means Clustering/2. K-Means Random Initialization Trap.vtt 11.61 KB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.vtt 11.59 KB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.vtt 11.56 KB
29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.vtt 11.33 KB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.vtt 11.28 KB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.vtt 11.12 KB
1. Welcome to the course!/6. Installing Python and Anaconda (Mac, Linux & Windows).vtt 10.98 KB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.vtt 10.74 KB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.vtt 10.59 KB
31. Artificial Neural Networks/3. The Activation Function.vtt 10.56 KB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.vtt 10.5 KB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.vtt 10.35 KB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.vtt 10.19 KB
7. Support Vector Regression (SVR)/2. SVR Intuition.vtt 10.11 KB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.vtt 9.89 KB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.vtt 9.71 KB
31. Artificial Neural Networks/19. ANN in Python - Step 8.vtt 9.64 KB
2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.vtt 9.39 KB
15. Kernel SVM/2. Mapping to a higher dimension.vtt 9.32 KB
9. Random Forest Regression/1. Random Forest Regression Intuition.vtt 9.29 KB
29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.vtt 9.23 KB
31. Artificial Neural Networks/21. ANN in Python - Step 10.vtt 9.03 KB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.vtt 8.89 KB
31. Artificial Neural Networks/23. ANN in R - Step 2.vtt 8.85 KB
29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.vtt 8.83 KB
29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.vtt 8.6 KB
22. Hierarchical Clustering/6. HC in Python - Step 2.vtt 8.57 KB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).vtt 8.57 KB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.vtt 8.35 KB
14. Support Vector Machine (SVM)/4.1 SVM.zip.zip 8.27 KB
31. Artificial Neural Networks/20. ANN in Python - Step 9.vtt 8.24 KB
1. Welcome to the course!/8. Installing R and R Studio (Mac, Linux & Windows).vtt 8.23 KB
1. Welcome to the course!/2. Why Machine Learning is the Future.vtt 8.12 KB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.vtt 8.08 KB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.vtt 8.02 KB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.vtt 8 KB
12. Logistic Regression/9. Logistic Regression in R - Step 1.vtt 7.92 KB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.vtt 7.8 KB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.vtt 7.77 KB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.vtt 7.5 KB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.vtt 7.38 KB
22. Hierarchical Clustering/11. HC in R - Step 2.vtt 7.32 KB
29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.vtt 7.32 KB
29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.vtt 7.25 KB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.vtt 7.23 KB
25. Eclat/1. Eclat Intuition.vtt 7.12 KB
6. Polynomial Regression/1. Polynomial Regression Intuition.vtt 7.07 KB
2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.vtt 6.98 KB
29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.vtt 6.97 KB
22. Hierarchical Clustering/7. HC in Python - Step 3.vtt 6.95 KB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.vtt 6.86 KB
22. Hierarchical Clustering/5. HC in Python - Step 1.vtt 6.79 KB
19. Evaluating Classification Models Performance/2. Confusion Matrix.vtt 6.74 KB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.vtt 6.71 KB
12. Logistic Regression/11. Logistic Regression in R - Step 3.vtt 6.65 KB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.vtt 6.59 KB
31. Artificial Neural Networks/10. Business Problem Description.vtt 6.47 KB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.vtt 6.46 KB
18. Random Forest Classification/1. Random Forest Classification Intuition.vtt 6.41 KB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.vtt 6.37 KB
31. Artificial Neural Networks/8. Backpropagation.vtt 6.32 KB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.vtt 6.29 KB
29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.vtt 6.26 KB
22. Hierarchical Clustering/9. HC in Python - Step 5.vtt 6.14 KB
12. Logistic Regression/14. R Classification Template.vtt 6.06 KB
22. Hierarchical Clustering/8. HC in Python - Step 4.vtt 5.85 KB
22. Hierarchical Clustering/10. HC in R - Step 1.vtt 5.67 KB
12. Logistic Regression/8. Python Classification Template.vtt 5.48 KB
32. Convolutional Neural Networks/8. Summary.vtt 5.33 KB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.vtt 5.2 KB
31. Artificial Neural Networks/18. ANN in Python - Step 7.vtt 5.17 KB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.vtt 5.11 KB
29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.vtt 4.99 KB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.vtt 4.94 KB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.vtt 4.76 KB
40. Bonus Lectures/1. YOUR SPECIAL BONUS.html 4.74 KB
1. Welcome to the course!/1. Applications of Machine Learning.vtt 4.64 KB
32. Convolutional Neural Networks/1. Plan of attack.vtt 4.63 KB
31. Artificial Neural Networks/14. ANN in Python - Step 3.vtt 4.62 KB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.vtt 4.53 KB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.vtt 4.45 KB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.vtt 4.42 KB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.vtt 4.38 KB
15. Kernel SVM/4. Types of Kernel Functions.vtt 4.37 KB
22. Hierarchical Clustering/12. HC in R - Step 3.vtt 4.29 KB
12. Logistic Regression/2. How to get the dataset.vtt 4.23 KB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.vtt 4.23 KB
14. Support Vector Machine (SVM)/2. How to get the dataset.vtt 4.23 KB
15. Kernel SVM/5. How to get the dataset.vtt 4.23 KB
16. Naive Bayes/5. How to get the dataset.vtt 4.23 KB
17. Decision Tree Classification/2. How to get the dataset.vtt 4.23 KB
18. Random Forest Classification/2. How to get the dataset.vtt 4.23 KB
21. K-Means Clustering/4. How to get the dataset.vtt 4.23 KB
22. Hierarchical Clustering/4. How to get the dataset.vtt 4.23 KB
24. Apriori/2. How to get the dataset.vtt 4.23 KB
25. Eclat/2. How to get the dataset.vtt 4.23 KB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.vtt 4.23 KB
28. Thompson Sampling/3. How to get the dataset.vtt 4.23 KB
29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.vtt 4.23 KB
31. Artificial Neural Networks/9. How to get the dataset.vtt 4.23 KB
32. Convolutional Neural Networks/10. How to get the dataset.vtt 4.23 KB
34. Principal Component Analysis (PCA)/2. How to get the dataset.vtt 4.23 KB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.vtt 4.23 KB
36. Kernel PCA/1. How to get the dataset.vtt 4.23 KB
38. Model Selection/1. How to get the dataset.vtt 4.23 KB
39. XGBoost/1. How to get the dataset.vtt 4.23 KB
4. Simple Linear Regression/1. How to get the dataset.vtt 4.23 KB
5. Multiple Linear Regression/1. How to get the dataset.vtt 4.23 KB
6. Polynomial Regression/2. How to get the dataset.vtt 4.23 KB
7. Support Vector Regression (SVR)/1. How to get the dataset.vtt 4.23 KB
8. Decision Tree Regression/2. How to get the dataset.vtt 4.23 KB
9. Random Forest Regression/2. How to get the dataset.vtt 4.23 KB
29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.vtt 4.2 KB
31. Artificial Neural Networks/17. ANN in Python - Step 6.vtt 4.03 KB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.vtt 3.93 KB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.vtt 3.92 KB
12. Logistic Regression/10. Logistic Regression in R - Step 2.vtt 3.92 KB
15. Kernel SVM/1. Kernel SVM Intuition.vtt 3.92 KB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.vtt 3.91 KB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.vtt 3.86 KB
29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.vtt 3.86 KB
19. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html 3.75 KB
4. Simple Linear Regression/2. Dataset + Business Problem Description.vtt 3.71 KB
1. Welcome to the course!/3. Important notes, tips & tricks for this course.html 3.68 KB
22. Hierarchical Clustering/14. HC in R - Step 5.vtt 3.66 KB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.vtt 3.66 KB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.vtt 3.63 KB
1. Welcome to the course!/5. Updates on Udemy Reviews.vtt 3.57 KB
12. Logistic Regression/12. Logistic Regression in R - Step 4.vtt 3.55 KB
31. Artificial Neural Networks/1. Plan of attack.vtt 3.54 KB
22. Hierarchical Clustering/13. HC in R - Step 4.vtt 3.49 KB
31. Artificial Neural Networks/15. ANN in Python - Step 4.vtt 3.46 KB
10. Evaluating Regression Models Performance/5. Conclusion of Part 2 - Regression.html 3.24 KB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.vtt 3.17 KB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.vtt 2.94 KB
29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.vtt 2.83 KB
32. Convolutional Neural Networks/22. CNN in R.html 2.38 KB
29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.vtt 2.31 KB
2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.vtt 2.29 KB
32. Convolutional Neural Networks/6. Step 3 - Flattening.vtt 2.28 KB
5. Multiple Linear Regression/15. Multiple Linear Regression in Python - Automatic Backward Elimination.html 2.14 KB
29. -------------------- Part 7 Natural Language Processing --------------------/1. Welcome to Part 7 - Natural Language Processing.html 1.69 KB
2. -------------------- Part 1 Data Preprocessing --------------------/5. For Python learners, summary of Object-oriented programming classes & objects.html 1.58 KB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.vtt 1.56 KB
1. Welcome to the course!/4. This PDF resource will help you a lot.html 1.49 KB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.vtt 1.43 KB
31. Artificial Neural Networks/11. Installing Keras.html 1.42 KB
29. -------------------- Part 7 Natural Language Processing --------------------/25. Homework Challenge.html 1.4 KB
29. -------------------- Part 7 Natural Language Processing --------------------/14. Homework Challenge.html 1.37 KB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.vtt 1.34 KB
1. Welcome to the course!/7. Update Recommended Anaconda Version.html 1.32 KB
33. -------------------- Part 9 Dimensionality Reduction --------------------/1. Welcome to Part 9 - Dimensionality Reduction.html 1.26 KB
1. Welcome to the course!/9. BONUS Meet your instructors.html 1.04 KB
32. Convolutional Neural Networks/11. Installing Keras.html 927 B
37. -------------------- Part 10 Model Selection & Boosting --------------------/1. Welcome to Part 10 - Model Selection & Boosting.html 899 B
3. -------------------- Part 2 Regression --------------------/1. Welcome to Part 2 - Regression.html 875 B
30. -------------------- Part 8 Deep Learning --------------------/1. Welcome to Part 8 - Deep Learning.html 870 B
11. -------------------- Part 3 Classification --------------------/1. Welcome to Part 3 - Classification.html 831 B
26. -------------------- Part 6 Reinforcement Learning --------------------/1. Welcome to Part 6 - Reinforcement Learning.html 804 B
2. -------------------- Part 1 Data Preprocessing --------------------/8. WARNING - Update.html 783 B
20. -------------------- Part 4 Clustering --------------------/1. Welcome to Part 4 - Clustering.html 734 B
5. Multiple Linear Regression/21. Multiple Linear Regression in R - Automatic Backward Elimination.html 726 B
5. Multiple Linear Regression/7. Prerequisites What is the P-Value.html 676 B
22. Hierarchical Clustering/16. Conclusion of Part 4 - Clustering.html 506 B
23. -------------------- Part 5 Association Rule Learning --------------------/1. Welcome to Part 5 - Association Rule Learning.html 425 B
[FCS Forum].url 133 B
[FreeCourseSite.com].url 127 B
[CourseClub.NET].url 123 B
12. Logistic Regression/15. Logistic Regression.html 121 B
13. K-Nearest Neighbors (K-NN)/5. K-Nearest Neighbor.html 121 B
2. -------------------- Part 1 Data Preprocessing --------------------/12. Data Preprocessing.html 121 B
21. K-Means Clustering/7. K-Means Clustering.html 121 B
22. Hierarchical Clustering/15. Hierarchical Clustering.html 121 B
4. Simple Linear Regression/13. Simple Linear Regression.html 121 B
5. Multiple Linear Regression/22. Multiple Linear Regression.html 121 B
Download Info
-
Tips
“[FreeCourseSite.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.