[UdemyCourseDownloader] Machine Learning A-Z™ Hands-On Python & R In Data Science

mp4   Hot:104   Size:6.84 GB   Created:2019-10-24 07:14:50   Update:2021-12-13 14:36:50  

File List

  • 12 Logistic Regression/096 Logistic Regression in R - Step 5.mp4 93.76 MB
    31 Artificial Neural Networks/225 ANN in Python - Step 2.mp4 84.87 MB
    17 Decision Tree Classification/123 Decision Tree Classification in R.mp4 68.18 MB
    14 Support Vector Machine (SVM)/105 SVM in R.mp4 65.31 MB
    18 Random Forest Classification/127 Random Forest Classification in R.mp4 64.11 MB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9.mp4 62.41 MB
    18 Random Forest Classification/126 Random Forest Classification in Python.mp4 62.04 MB
    07 Support Vector Regression (SVR)/068 SVR in Python.mp4 60.22 MB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp4 59.14 MB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3.mp4 57.84 MB
    36 Kernel PCA/274 Kernel PCA in R.mp4 56.57 MB
    24 Apriori/161 Apriori in R - Step 3.mp4 56.51 MB
    08 Decision Tree Regression/073 Decision Tree Regression in R.mp4 56.23 MB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R.mp4 55.77 MB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1.mp4 55.52 MB
    15 Kernel SVM/111 Kernel SVM in Python.mp4 54.86 MB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3.mp4 54.8 MB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3.mp4 54.5 MB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 54.26 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10.mp4 54.14 MB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3.mp4 53.71 MB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5.mp4 53.15 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data.mp4 52.88 MB
    24 Apriori/159 Apriori in R - Step 1.mp4 52.83 MB
    15 Kernel SVM/112 Kernel SVM in R.mp4 52.82 MB
    09 Random Forest Regression/076 Random Forest Regression in Python.mp4 52.69 MB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1.mp4 52.18 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8.mp4 52.02 MB
    09 Random Forest Regression/077 Random Forest Regression in R.mp4 51.86 MB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R.mp4 51.29 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1.mp4 51.2 MB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1.mp4 51.04 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set.mp4 50.91 MB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4 50.78 MB
    16 Naive Bayes/113 Bayes Theorem.mp4 50.43 MB
    31 Artificial Neural Networks/234 ANN in R - Step 1.mp4 49.89 MB
    21 K-Means Clustering/139 K-Means Clustering in Python.mp4 49.81 MB
    16 Naive Bayes/119 Naive Bayes in R.mp4 49.79 MB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4.mp4 49.16 MB
    24 Apriori/162 Apriori in Python - Step 1.mp4 47.41 MB
    39 XGBoost/285 XGBoost in R.mp4 47.26 MB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python.mp4 46.98 MB
    07 Support Vector Regression (SVR)/067 SVR Intuition.mp4 46.59 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1.mp4 46.06 MB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python.mp4 45.42 MB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2.mp4 45.22 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling.mp4 44.59 MB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2.mp4 44.49 MB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step).mp4 43.75 MB
    38 Model Selection/278 k-Fold Cross Validation in R.mp4 43.63 MB
    08 Decision Tree Regression/072 Decision Tree Regression in Python.mp4 43.44 MB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection.mp4 42.74 MB
    14 Support Vector Machine (SVM)/104 SVM in Python.mp4 41.71 MB
    32 Convolutional Neural Networks/242 Step 2 - Pooling.mp4 40.24 MB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4.mp4 39.37 MB
    31 Artificial Neural Networks/228 ANN in Python - Step 5.mp4 39.36 MB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1.mp4 39.01 MB
    17 Decision Tree Classification/122 Decision Tree Classification in Python.mp4 38.85 MB
    24 Apriori/160 Apriori in R - Step 2.mp4 38.81 MB
    38 Model Selection/279 Grid Search in Python - Step 1.mp4 38.21 MB
    31 Artificial Neural Networks/236 ANN in R - Step 3.mp4 37.85 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9.mp4 37.69 MB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp4 37.45 MB
    24 Apriori/163 Apriori in Python - Step 2.mp4 37.32 MB
    28 Thompson Sampling/180 Thompson Sampling Intuition.mp4 37.27 MB
    21 K-Means Clustering/140 K-Means Clustering in R.mp4 36.91 MB
    06 Polynomial Regression/060 Python Regression Template.mp4 36.78 MB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3.mp4 36.73 MB
    38 Model Selection/281 Grid Search in R.mp4 35.54 MB
    24 Apriori/164 Apriori in Python - Step 3.mp4 35.3 MB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2.mp4 35.11 MB
    24 Apriori/157 Apriori Intuition.mp4 35.02 MB
    15 Kernel SVM/108 The Kernel Trick.mp4 34.72 MB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4.mp4 34.62 MB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2.mp4 34.1 MB
    31 Artificial Neural Networks/231 ANN in Python - Step 8.mp4 34.03 MB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1.mp4 34.01 MB
    07 Support Vector Regression (SVR)/069 SVR in R.mp4 33.73 MB
    36 Kernel PCA/273 Kernel PCA in Python.mp4 33.38 MB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy.mp4 33.23 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10.mp4 32.91 MB
    38 Model Selection/277 k-Fold Cross Validation in Python.mp4 32.83 MB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5.mp4 32.8 MB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2.mp4 32.28 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data.mp4 32.16 MB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition.mp4 32.11 MB
    39 XGBoost/284 XGBoost in Python - Step 2.mp4 31.97 MB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1.mp4 31.95 MB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1.mp4 31.64 MB
    06 Polynomial Regression/065 R Regression Template.mp4 31.33 MB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning.mp4 31.31 MB
    16 Naive Bayes/118 Naive Bayes in Python.mp4 31.14 MB
    16 Naive Bayes/114 Naive Bayes Intuition.mp4 31.1 MB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation.mp4 31.02 MB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1.mp4 30.65 MB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1.mp4 30.6 MB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem.mp4 30.19 MB
    21 K-Means Clustering/135 K-Means Clustering Intuition.mp4 29.97 MB
    31 Artificial Neural Networks/215 The Neuron.mp4 29.86 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4.mp4 29.75 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition.mp4 29.69 MB
    38 Model Selection/280 Grid Search in Python - Step 2.mp4 29.51 MB
    32 Convolutional Neural Networks/239 What are convolutional neural networks.mp4 29.5 MB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition.mp4 29.32 MB
    31 Artificial Neural Networks/223 Business Problem Description.mp4 29.23 MB
    12 Logistic Regression/084 Logistic Regression Intuition.mp4 29.17 MB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2.mp4 29.02 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset.mp4 28.64 MB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4.mp4 28.52 MB
    31 Artificial Neural Networks/232 ANN in Python - Step 9.mp4 28.47 MB
    31 Artificial Neural Networks/233 ANN in Python - Step 10.mp4 28.42 MB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part.mp4 28.35 MB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1.mp4 27.92 MB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10.mp4 27.74 MB
    12 Logistic Regression/094 Logistic Regression in R - Step 3.mp4 27.44 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2.mp4 27.44 MB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients.mp4 27.38 MB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition.mp4 26.98 MB
    31 Artificial Neural Networks/218 How do Neural Networks learn.mp4 26.55 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template.mp4 25.86 MB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters.mp4 25.68 MB
    18 Random Forest Classification/124 Random Forest Classification Intuition.mp4 25.66 MB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3.mp4 25.51 MB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3.mp4 25.48 MB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition.mp4 25.33 MB
    25 Eclat/167 Eclat in R.mp4 25.26 MB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2.mp4 24.87 MB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2.mp4 24.62 MB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows).mp4 23.96 MB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 23.82 MB
    31 Artificial Neural Networks/217 How do Neural Networks work.mp4 23.53 MB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1.mp4 23.44 MB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows).mp4 23.21 MB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms.mp4 22.81 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7.mp4 22.13 MB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2.mp4 22.07 MB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 21.95 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2.mp4 21.66 MB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition.mp4 21.63 MB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition.mp4 21.41 MB
    39 XGBoost/283 XGBoost in Python - Step 1.mp4 21.39 MB
    22 Hierarchical Clustering/148 HC in Python - Step 4.mp4 21.32 MB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1.mp4 21.21 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset.mp4 21.15 MB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3.mp4 20.55 MB
    19 Evaluating Classification Models Performance/131 CAP Curve.mp4 20.31 MB
    14 Support Vector Machine (SVM)/102 SVM Intuition.mp4 19.92 MB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras).mp4 18.94 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9.mp4 18.9 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5.mp4 18.8 MB
    31 Artificial Neural Networks/219 Gradient Descent.mp4 18.53 MB
    31 Artificial Neural Networks/235 ANN in R - Step 2.mp4 18.24 MB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4.mp4 17.65 MB
    12 Logistic Regression/091 Python Classification Template.mp4 17.58 MB
    12 Logistic Regression/097 R Classification Template.mp4 17.5 MB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work.mp4 17.46 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8.mp4 17.23 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3.mp4 16.89 MB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1.mp4 16.84 MB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent.mp4 16.82 MB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7.mp4 16.65 MB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3.mp4 16.59 MB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition.mp4 16.52 MB
    22 Hierarchical Clustering/147 HC in Python - Step 3.mp4 16.17 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6.mp4 16.09 MB
    12 Logistic Regression/092 Logistic Regression in R - Step 1.mp4 15.72 MB
    15 Kernel SVM/109 Types of Kernel Functions.mp4 15.71 MB
    09 Random Forest Regression/074 Random Forest Regression Intuition.mp4 15.65 MB
    22 Hierarchical Clustering/146 HC in Python - Step 2.mp4 15.51 MB
    15 Kernel SVM/107 Mapping to a higher dimension.mp4 15.39 MB
    21 K-Means Clustering/136 K-Means Random Initialization Trap.mp4 15.36 MB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives.mp4 15.12 MB
    31 Artificial Neural Networks/230 ANN in Python - Step 7.mp4 14.92 MB
    12 Logistic Regression/093 Logistic Regression in R - Step 2.mp4 14.85 MB
    31 Artificial Neural Networks/216 The Activation Function.mp4 14.75 MB
    31 Artificial Neural Networks/226 ANN in Python - Step 3.mp4 14.62 MB
    01 Welcome to the course/002 Why Machine Learning is the Future.mp4 14.48 MB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer.mp4 14.09 MB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling.mp4 14.08 MB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4.mp4 13.87 MB
    22 Hierarchical Clustering/151 HC in R - Step 2.mp4 13.87 MB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3.mp4 13.85 MB
    22 Hierarchical Clustering/145 HC in Python - Step 1.mp4 13.77 MB
    22 Hierarchical Clustering/154 HC in R - Step 5.mp4 13.68 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries.mp4 13.56 MB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal).mp4 13.27 MB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis.mp4 12.94 MB
    05 Multiple Linear Regression/034 Dataset Business Problem Description.mp4 12.56 MB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4.mp4 12.44 MB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5.mp4 12.38 MB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6.mp4 11.94 MB
    31 Artificial Neural Networks/229 ANN in Python - Step 6.mp4 11.93 MB
    12 Logistic Regression/095 Logistic Regression in R - Step 4.mp4 11.73 MB
    04 Simple Linear Regression/021 How to get the dataset.mp4 11.71 MB
    05 Multiple Linear Regression/033 How to get the dataset.mp4 11.71 MB
    06 Polynomial Regression/055 How to get the dataset.mp4 11.71 MB
    07 Support Vector Regression (SVR)/066 How to get the dataset.mp4 11.71 MB
    08 Decision Tree Regression/071 How to get the dataset.mp4 11.71 MB
    09 Random Forest Regression/075 How to get the dataset.mp4 11.71 MB
    12 Logistic Regression/085 How to get the dataset.mp4 11.71 MB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset.mp4 11.71 MB
    14 Support Vector Machine (SVM)/103 How to get the dataset.mp4 11.71 MB
    15 Kernel SVM/110 How to get the dataset.mp4 11.71 MB
    16 Naive Bayes/117 How to get the dataset.mp4 11.71 MB
    17 Decision Tree Classification/121 How to get the dataset.mp4 11.71 MB
    18 Random Forest Classification/125 How to get the dataset.mp4 11.71 MB
    21 K-Means Clustering/138 How to get the dataset.mp4 11.71 MB
    22 Hierarchical Clustering/144 How to get the dataset.mp4 11.71 MB
    24 Apriori/158 How to get the dataset.mp4 11.71 MB
    25 Eclat/166 How to get the dataset.mp4 11.71 MB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset.mp4 11.71 MB
    28 Thompson Sampling/182 How to get the dataset.mp4 11.71 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset.mp4 11.71 MB
    31 Artificial Neural Networks/222 How to get the dataset.mp4 11.71 MB
    32 Convolutional Neural Networks/247 How to get the dataset.mp4 11.71 MB
    34 Principal Component Analysis (PCA)/261 How to get the dataset.mp4 11.71 MB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset.mp4 11.71 MB
    36 Kernel PCA/272 How to get the dataset.mp4 11.71 MB
    38 Model Selection/276 How to get the dataset.mp4 11.71 MB
    39 XGBoost/282 How to get the dataset.mp4 11.71 MB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1.mp4 11.52 MB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3.mp4 11.42 MB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2.mp4 11.22 MB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2.mp4 11.1 MB
    31 Artificial Neural Networks/221 Backpropagation.mp4 10.92 MB
    25 Eclat/165 Eclat Intuition.mp4 10.65 MB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1.mp4 10.52 MB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition.mp4 10.48 MB
    22 Hierarchical Clustering/153 HC in R - Step 4.mp4 10.17 MB
    22 Hierarchical Clustering/152 HC in R - Step 3.mp4 9.95 MB
    22 Hierarchical Clustering/149 HC in Python - Step 5.mp4 9.92 MB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2.mp4 9.84 MB
    01 Welcome to the course/001 Applications of Machine Learning.mp4 9.81 MB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition.mp4 9.8 MB
    31 Artificial Neural Networks/227 ANN in Python - Step 4.mp4 9.69 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7.mp4 9.59 MB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2.mp4 9.56 MB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4.mp4 9.55 MB
    06 Polynomial Regression/054 Polynomial Regression Intuition.mp4 9.44 MB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8.mp4 8.95 MB
    19 Evaluating Classification Models Performance/129 Confusion Matrix.mp4 8.91 MB
    22 Hierarchical Clustering/150 HC in R - Step 1.mp4 8.59 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6.mp4 8.32 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4.mp4 8.24 MB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3.mp4 7.98 MB
    32 Convolutional Neural Networks/245 Summary.mp4 7.91 MB
    04 Simple Linear Regression/022 Dataset Business Problem Description.mp4 7.77 MB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2.mp4 7.2 MB
    15 Kernel SVM/106 Kernel SVM Intuition.mp4 6.42 MB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2.mp4 5.99 MB
    32 Convolutional Neural Networks/238 Plan of attack.mp4 5.9 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5.mp4 5.78 MB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4.mp4 5.34 MB
    31 Artificial Neural Networks/214 Plan of attack.mp4 4.74 MB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox.mp4 4.21 MB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3.mp4 4.16 MB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing.mp4 3.52 MB
    32 Convolutional Neural Networks/243 Step 3 - Flattening.mp4 3.27 MB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3.mp4 2.8 MB
    01 Welcome to the course/004 Machine-Learning-A-Z-Q-A.pdf 2.26 MB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2.mp4 2.03 MB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1.mp4 2 MB
    25 Eclat/167 Eclat.zip 48.54 KB
    16 Naive Bayes/113 Bayes Theorem-ja.srt 37.31 KB
    18 Random Forest Classification/127 Random Forest Classification in R-ja.srt 37.26 KB
    36 Kernel PCA/274 Kernel PCA in R-ja.srt 36.8 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-ja.srt 36.66 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-ja.srt 35.69 KB
    24 Apriori/161 Apriori in R - Step 3-ja.srt 35.63 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-ja.srt 35.59 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-ja.srt 35.45 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-ja.srt 35.41 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-ja.srt 35.41 KB
    24 Apriori/159 Apriori in R - Step 1-ja.srt 35.18 KB
    16 Naive Bayes/113 Bayes Theorem-es.srt 34.64 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-ja.srt 34.37 KB
    16 Naive Bayes/113 Bayes Theorem-pt.srt 33.99 KB
    16 Naive Bayes/113 Bayes Theorem-it.srt 33.97 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-ja.srt 33.94 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-ja.srt 33.68 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-ja.srt 33.63 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-ja.srt 33.5 KB
    18 Random Forest Classification/127 Random Forest Classification in R-es.srt 33.41 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-ja.srt 33.3 KB
    36 Kernel PCA/274 Kernel PCA in R-es.srt 33.27 KB
    18 Random Forest Classification/127 Random Forest Classification in R-pt.srt 33.21 KB
    16 Naive Bayes/113 Bayes Theorem-en.srt 33.15 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-ja.srt 33.05 KB
    38 Model Selection/278 k-Fold Cross Validation in R-ja.srt 33.05 KB
    15 Kernel SVM/111 Kernel SVM in Python-ja.srt 33.03 KB
    18 Random Forest Classification/127 Random Forest Classification in R-it.srt 32.96 KB
    36 Kernel PCA/274 Kernel PCA in R-pt.srt 32.89 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-ja.srt 32.86 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-pt.srt 32.8 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-es.srt 32.78 KB
    36 Kernel PCA/274 Kernel PCA in R-it.srt 32.68 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-ja.srt 32.6 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-ja.srt 32.54 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-it.srt 32.5 KB
    16 Naive Bayes/113 Bayes Theorem-tr.srt 32.36 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-ja.srt 32.25 KB
    18 Random Forest Classification/127 Random Forest Classification in R-tr.srt 32.24 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-ja.srt 32.2 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-es.srt 32.08 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-es.srt 31.99 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-es.srt 31.97 KB
    36 Kernel PCA/274 Kernel PCA in R-tr.srt 31.95 KB
    24 Apriori/162 Apriori in Python - Step 1-ja.srt 31.93 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-es.srt 31.91 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-ja.srt 31.72 KB
    24 Apriori/161 Apriori in R - Step 3-es.srt 31.71 KB
    39 XGBoost/285 XGBoost in R-ja.srt 31.63 KB
    09 Random Forest Regression/077 Random Forest Regression in R-ja.srt 31.63 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-ja.srt 31.62 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-pt.srt 31.6 KB
    24 Apriori/159 Apriori in R - Step 1-es.srt 31.54 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-pt.srt 31.53 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-es.srt 31.52 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-it.srt 31.47 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-pt.srt 31.43 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-pt.srt 31.4 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-it.srt 31.31 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-it.srt 31.3 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-ja.srt 31.29 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-tr.srt 31.29 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-it.srt 31.23 KB
    24 Apriori/161 Apriori in R - Step 3-it.srt 31.2 KB
    24 Apriori/161 Apriori in R - Step 3-pt.srt 31.2 KB
    18 Random Forest Classification/127 Random Forest Classification in R-en.srt 31.18 KB
    24 Apriori/159 Apriori in R - Step 1-pt.srt 31.09 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-es.srt 31.06 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-es.srt 31.03 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-it.srt 31.03 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-pt.srt 31.03 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-tr.srt 30.98 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-es.srt 30.97 KB
    08 Decision Tree Regression/073 Decision Tree Regression in R-en.srt 30.91 KB
    24 Apriori/159 Apriori in R - Step 1-it.srt 30.86 KB
    36 Kernel PCA/274 Kernel PCA in R-en.srt 30.81 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-pt.srt 30.79 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-ja.srt 30.71 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-pt.srt 30.68 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-it.srt 30.68 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-pt.srt 30.65 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-tr.srt 30.64 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-ja.srt 30.62 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-it.srt 30.55 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-tr.srt 30.53 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-it.srt 30.44 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-ja.srt 30.4 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-tr.srt 30.33 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-ja.srt 30.19 KB
    06 Polynomial Regression/058 Polynomial Regression in Python - Step 3-en.srt 30.17 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-es.srt 30.14 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-tr.srt 30.11 KB
    38 Model Selection/278 k-Fold Cross Validation in R-es.srt 30.08 KB
    24 Apriori/161 Apriori in R - Step 3-tr.srt 30.06 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-pt.srt 30.01 KB
    24 Apriori/161 Apriori in R - Step 3-en.srt 29.97 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-es.srt 29.96 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-tr.srt 29.91 KB
    24 Apriori/159 Apriori in R - Step 1-en.srt 29.88 KB
    24 Apriori/157 Apriori Intuition-ja.srt 29.8 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-it.srt 29.79 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-pt.srt 29.76 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-es.srt 29.73 KB
    07 Support Vector Regression (SVR)/068 SVR in Python-en.srt 29.7 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-pt.srt 29.69 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-en.srt 29.68 KB
    35 Linear Discriminant Analysis (LDA)/271 LDA in R-en.srt 29.68 KB
    24 Apriori/159 Apriori in R - Step 1-tr.srt 29.63 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-it.srt 29.61 KB
    18 Random Forest Classification/126 Random Forest Classification in Python-en.srt 29.59 KB
    38 Model Selection/278 k-Fold Cross Validation in R-it.srt 29.57 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-pt.srt 29.57 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-es.srt 29.56 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-tr.srt 29.55 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-es.srt 29.54 KB
    15 Kernel SVM/112 Kernel SVM in R-ja.srt 29.49 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-it.srt 29.49 KB
    31 Artificial Neural Networks/215 The Neuron-ja.srt 29.48 KB
    38 Model Selection/278 k-Fold Cross Validation in R-pt.srt 29.47 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-it.srt 29.45 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-ja.srt 29.43 KB
    06 Polynomial Regression/063 Polynomial Regression in R - Step 3-tr.srt 29.42 KB
    32 Convolutional Neural Networks/256 CNN in Python - Step 9-en.srt 29.38 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-ja.srt 29.27 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-pt.srt 29.25 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-tr.srt 29.22 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-ja.srt 29.16 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-es.srt 29.12 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-it.srt 29.12 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-es.srt 29.09 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-tr.srt 28.99 KB
    31 Artificial Neural Networks/225 ANN in Python - Step 2-en.srt 28.95 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-es.srt 28.93 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-es.srt 28.89 KB
    28 Thompson Sampling/183 Thompson Sampling in Python - Step 1-en.srt 28.88 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-es.srt 28.79 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-pt.srt 28.73 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-pt.srt 28.7 KB
    09 Random Forest Regression/077 Random Forest Regression in R-es.srt 28.67 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-it.srt 28.62 KB
    15 Kernel SVM/111 Kernel SVM in Python-es.srt 28.62 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-es.srt 28.59 KB
    12 Logistic Regression/090 Logistic Regression in Python - Step 5-en.srt 28.59 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-en.srt 28.57 KB
    38 Model Selection/278 k-Fold Cross Validation in R-tr.srt 28.55 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-tr.srt 28.5 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-it.srt 28.48 KB
    32 Convolutional Neural Networks/244 Step 4 - Full Connection-tr.srt 28.48 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-pt.srt 28.47 KB
    15 Kernel SVM/111 Kernel SVM in Python-pt.srt 28.46 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-pt.srt 28.45 KB
    09 Random Forest Regression/077 Random Forest Regression in R-pt.srt 28.45 KB
    24 Apriori/162 Apriori in Python - Step 1-es.srt 28.44 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-tr.srt 28.41 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-ja.srt 28.4 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-pt.srt 28.34 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-it.srt 28.33 KB
    09 Random Forest Regression/077 Random Forest Regression in R-it.srt 28.32 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-es.srt 28.29 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-it.srt 28.19 KB
    39 XGBoost/285 XGBoost in R-es.srt 28.19 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-es.srt 28.17 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-pt.srt 28.16 KB
    15 Kernel SVM/111 Kernel SVM in Python-tr.srt 28.14 KB
    15 Kernel SVM/111 Kernel SVM in Python-it.srt 28.13 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-pt.srt 28.03 KB
    12 Logistic Regression/096 Logistic Regression in R - Step 5-en.srt 28.03 KB
    17 Decision Tree Classification/123 Decision Tree Classification in R-en.srt 28.01 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-it.srt 27.97 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-pt.srt 27.93 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-ja.srt 27.91 KB
    38 Model Selection/278 k-Fold Cross Validation in R-en.srt 27.91 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-it.srt 27.89 KB
    28 Thompson Sampling/185 Thompson Sampling in R - Step 1-en.srt 27.86 KB
    39 XGBoost/285 XGBoost in R-it.srt 27.81 KB
    24 Apriori/162 Apriori in Python - Step 1-it.srt 27.8 KB
    24 Apriori/162 Apriori in Python - Step 1-pt.srt 27.79 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-pt.srt 27.79 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-es.srt 27.77 KB
    39 XGBoost/285 XGBoost in R-pt.srt 27.75 KB
    12 Logistic Regression/084 Logistic Regression Intuition-ja.srt 27.74 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-it.srt 27.69 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-it.srt 27.68 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-tr.srt 27.67 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-ja.srt 27.56 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-en.srt 27.53 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-tr.srt 27.45 KB
    09 Random Forest Regression/077 Random Forest Regression in R-tr.srt 27.45 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-ja.srt 27.42 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-es.srt 27.38 KB
    28 Thompson Sampling/180 Thompson Sampling Intuition-tr.srt 27.35 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-tr.srt 27.22 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-es.srt 27.2 KB
    21 K-Means Clustering/139 K-Means Clustering in Python-en.srt 27.19 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-es.srt 27.16 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-tr.srt 27.15 KB
    15 Kernel SVM/111 Kernel SVM in Python-en.srt 27.12 KB
    09 Random Forest Regression/077 Random Forest Regression in R-en.srt 27.07 KB
    24 Apriori/157 Apriori Intuition-es.srt 27.05 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-pt.srt 27.02 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-it.srt 26.98 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-pt.srt 26.95 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-tr.srt 26.95 KB
    27 Upper Confidence Bound (UCB)/174 Upper Confidence Bound in Python - Step 3-en.srt 26.94 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-ja.srt 26.94 KB
    39 XGBoost/285 XGBoost in R-tr.srt 26.94 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-ja.srt 26.93 KB
    24 Apriori/162 Apriori in Python - Step 1-en.srt 26.88 KB
    24 Apriori/157 Apriori Intuition-pt.srt 26.82 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-it.srt 26.81 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-ja.srt 26.79 KB
    31 Artificial Neural Networks/234 ANN in R - Step 1-en.srt 26.79 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-tr.srt 26.76 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-pt.srt 26.72 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-it.srt 26.67 KB
    38 Model Selection/279 Grid Search in Python - Step 1-ja.srt 26.64 KB
    24 Apriori/162 Apriori in Python - Step 1-tr.srt 26.64 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-ja.srt 26.62 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-tr.srt 26.58 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-tr.srt 26.58 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-ja.srt 26.58 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-ja.srt 26.51 KB
    24 Apriori/157 Apriori Intuition-it.srt 26.5 KB
    35 Linear Discriminant Analysis (LDA)/270 LDA in Python-en.srt 26.5 KB
    05 Multiple Linear Regression/051 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-en.srt 26.47 KB
    09 Random Forest Regression/076 Random Forest Regression in Python-en.srt 26.47 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-ja.srt 26.37 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-it.srt 26.37 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-es.srt 26.33 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-es.srt 26.33 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-ja.srt 26.3 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/210 Natural Language Processing in R - Step 10-en.srt 26.29 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-tr.srt 26.24 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-pt.srt 26.19 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-it.srt 26.13 KB
    15 Kernel SVM/112 Kernel SVM in R-es.srt 26.11 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-ja.srt 26.06 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-pt.srt 26.04 KB
    39 XGBoost/285 XGBoost in R-en.srt 26 KB
    24 Apriori/157 Apriori Intuition-tr.srt 25.96 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/015 Categorical Data-en.srt 25.92 KB
    24 Apriori/157 Apriori Intuition-en.srt 25.91 KB
    31 Artificial Neural Networks/215 The Neuron-pt.srt 25.9 KB
    15 Kernel SVM/112 Kernel SVM in R-pt.srt 25.88 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/017 Splitting the Dataset into the Training set and Test set-en.srt 25.87 KB
    24 Apriori/163 Apriori in Python - Step 2-ja.srt 25.82 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-tr.srt 25.81 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-ja.srt 25.73 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-it.srt 25.7 KB
    24 Apriori/160 Apriori in R - Step 2-ja.srt 25.69 KB
    15 Kernel SVM/112 Kernel SVM in R-it.srt 25.68 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-tr.srt 25.66 KB
    36 Kernel PCA/273 Kernel PCA in Python-ja.srt 25.63 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-ja.srt 25.61 KB
    31 Artificial Neural Networks/215 The Neuron-es.srt 25.56 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-es.srt 25.5 KB
    38 Model Selection/281 Grid Search in R-ja.srt 25.45 KB
    16 Naive Bayes/119 Naive Bayes in R-ja.srt 25.39 KB
    31 Artificial Neural Networks/215 The Neuron-it.srt 25.34 KB
    27 Upper Confidence Bound (UCB)/178 Upper Confidence Bound in R - Step 3-en.srt 25.32 KB
    16 Naive Bayes/114 Naive Bayes Intuition-ja.srt 25.31 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-pt.srt 25.28 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-tr.srt 25.28 KB
    32 Convolutional Neural Networks/246 Softmax Cross-Entropy-en.srt 25.27 KB
    15 Kernel SVM/112 Kernel SVM in R-tr.srt 25.26 KB
    27 Upper Confidence Bound (UCB)/173 Upper Confidence Bound in Python - Step 2-en.srt 25.26 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-it.srt 25.17 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-ja.srt 25.12 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-tr.srt 25.06 KB
    31 Artificial Neural Networks/215 The Neuron-en.srt 25.04 KB
    12 Logistic Regression/084 Logistic Regression Intuition-es.srt 25.02 KB
    12 Logistic Regression/084 Logistic Regression Intuition-pt.srt 25.01 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-es.srt 25.01 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-ja.srt 24.96 KB
    12 Logistic Regression/084 Logistic Regression Intuition-it.srt 24.94 KB
    31 Artificial Neural Networks/215 The Neuron-tr.srt 24.73 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-ja.srt 24.69 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-pt.srt 24.67 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-es.srt 24.57 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-tr.srt 24.54 KB
    15 Kernel SVM/112 Kernel SVM in R-en.srt 24.48 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-ja.srt 24.42 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-it.srt 24.4 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-es.srt 24.4 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-it.srt 24.29 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-pt.srt 24.17 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-ja.srt 24.16 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-pt.srt 24.09 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-es.srt 24.02 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-ja.srt 24.02 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/201 Natural Language Processing in R - Step 1-en.srt 24 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-tr.srt 23.99 KB
    12 Logistic Regression/084 Logistic Regression Intuition-tr.srt 23.94 KB
    12 Logistic Regression/084 Logistic Regression Intuition-en.srt 23.94 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-es.srt 23.9 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-pt.srt 23.87 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-es.srt 23.83 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-pt.srt 23.83 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-es.srt 23.83 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/197 Natural Language Processing in Python - Step 8-en.srt 23.79 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-pt.srt 23.78 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-es.srt 23.78 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-ja.srt 23.77 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-pt.srt 23.76 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-it.srt 23.74 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-pt.srt 23.72 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-tr.srt 23.64 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-it.srt 23.57 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-es.srt 23.57 KB
    16 Naive Bayes/114 Naive Bayes Intuition-pt.srt 23.54 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-pt.srt 23.54 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-pt.srt 23.48 KB
    05 Multiple Linear Regression/041 Multiple Linear Regression in Python - Step 1-en.srt 23.43 KB
    16 Naive Bayes/114 Naive Bayes Intuition-es.srt 23.41 KB
    38 Model Selection/279 Grid Search in Python - Step 1-es.srt 23.4 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-it.srt 23.37 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-es.srt 23.35 KB
    38 Model Selection/279 Grid Search in Python - Step 1-pt.srt 23.3 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-es.srt 23.28 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-it.srt 23.24 KB
    32 Convolutional Neural Networks/240 Step 1 - Convolution Operation-en.srt 23.23 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-ja.srt 23.2 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-it.srt 23.2 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-pt.srt 23.2 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-it.srt 23.2 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-it.srt 23.2 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-pt.srt 23.19 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-it.srt 23.18 KB
    38 Model Selection/279 Grid Search in Python - Step 1-it.srt 23.16 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-tr.srt 23.13 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-tr.srt 23.1 KB
    36 Kernel PCA/273 Kernel PCA in Python-es.srt 23.1 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-tr.srt 23.09 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-tr.srt 23.05 KB
    24 Apriori/160 Apriori in R - Step 2-es.srt 23.04 KB
    16 Naive Bayes/114 Naive Bayes Intuition-it.srt 23.03 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-es.srt 23.01 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-it.srt 23 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-en.srt 22.99 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-ja.srt 22.97 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-ja.srt 22.97 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-tr.srt 22.97 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-tr.srt 22.95 KB
    04 Simple Linear Regression/032 Simple Linear Regression in R - Step 4-tr.srt 22.93 KB
    36 Kernel PCA/273 Kernel PCA in Python-pt.srt 22.86 KB
    39 XGBoost/284 XGBoost in Python - Step 2-ja.srt 22.84 KB
    38 Model Selection/279 Grid Search in Python - Step 1-tr.srt 22.83 KB
    08 Decision Tree Regression/072 Decision Tree Regression in Python-en.srt 22.82 KB
    24 Apriori/160 Apriori in R - Step 2-pt.srt 22.8 KB
    24 Apriori/163 Apriori in Python - Step 2-es.srt 22.73 KB
    36 Kernel PCA/273 Kernel PCA in Python-it.srt 22.72 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-pt.srt 22.71 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-ja.srt 22.7 KB
    05 Multiple Linear Regression/040 Multiple Linear Regression Intuition - Step 5-en.srt 22.69 KB
    24 Apriori/160 Apriori in R - Step 2-it.srt 22.68 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/014 Missing Data-en.srt 22.67 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-ja.srt 22.66 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-es.srt 22.66 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-es.srt 22.61 KB
    21 K-Means Clustering/140 K-Means Clustering in R-ja.srt 22.6 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-ja.srt 22.6 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-ja.srt 22.59 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-it.srt 22.58 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-pt.srt 22.58 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-pt.srt 22.57 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/018 Feature Scaling-en.srt 22.54 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-it.srt 22.52 KB
    21 K-Means Clustering/135 K-Means Clustering Intuition-en.srt 22.5 KB
    16 Naive Bayes/114 Naive Bayes Intuition-en.srt 22.49 KB
    24 Apriori/163 Apriori in Python - Step 2-pt.srt 22.47 KB
    16 Naive Bayes/119 Naive Bayes in R-es.srt 22.47 KB
    38 Model Selection/281 Grid Search in R-es.srt 22.47 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-es.srt 22.47 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-ja.srt 22.46 KB
    16 Naive Bayes/114 Naive Bayes Intuition-tr.srt 22.46 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-tr.srt 22.44 KB
    13 K-Nearest Neighbors (K-NN)/101 K-NN in R-en.srt 22.44 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-it.srt 22.42 KB
    24 Apriori/163 Apriori in Python - Step 2-it.srt 22.35 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-ja.srt 22.32 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-ja.srt 22.32 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-en.srt 22.27 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-it.srt 22.27 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-tr.srt 22.26 KB
    38 Model Selection/281 Grid Search in R-pt.srt 22.24 KB
    27 Upper Confidence Bound (UCB)/169 The Multi-Armed Bandit Problem-tr.srt 22.22 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-tr.srt 22.19 KB
    36 Kernel PCA/273 Kernel PCA in Python-tr.srt 22.19 KB
    24 Apriori/160 Apriori in R - Step 2-en.srt 22.18 KB
    27 Upper Confidence Bound (UCB)/177 Upper Confidence Bound in R - Step 2-en.srt 22.17 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-es.srt 22.17 KB
    38 Model Selection/281 Grid Search in R-it.srt 22.17 KB
    24 Apriori/164 Apriori in Python - Step 3-ja.srt 22.17 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-es.srt 22.08 KB
    16 Naive Bayes/119 Naive Bayes in R-pt.srt 22.08 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-ja.srt 22.07 KB
    32 Convolutional Neural Networks/239 What are convolutional neural networks-en.srt 22.06 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-tr.srt 22.05 KB
    38 Model Selection/279 Grid Search in Python - Step 1-en.srt 22.05 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-es.srt 22.03 KB
    24 Apriori/160 Apriori in R - Step 2-tr.srt 22.02 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-ja.srt 22 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-pt.srt 21.94 KB
    16 Naive Bayes/119 Naive Bayes in R-tr.srt 21.93 KB
    27 Upper Confidence Bound (UCB)/170 Upper Confidence Bound (UCB) Intuition-en.srt 21.92 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-ja.srt 21.9 KB
    27 Upper Confidence Bound (UCB)/172 Upper Confidence Bound in Python - Step 1-en.srt 21.86 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-ja.srt 21.82 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-es.srt 21.82 KB
    16 Naive Bayes/119 Naive Bayes in R-it.srt 21.75 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-it.srt 21.74 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-ja.srt 21.73 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-tr.srt 21.71 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-pt.srt 21.71 KB
    24 Apriori/163 Apriori in Python - Step 2-en.srt 21.68 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-pt.srt 21.67 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-it.srt 21.67 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-pt.srt 21.66 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-it.srt 21.65 KB
    04 Simple Linear Regression/028 Simple Linear Regression in Python - Step 4-en.srt 21.6 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-it.srt 21.56 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-ja.srt 21.53 KB
    36 Kernel PCA/273 Kernel PCA in Python-en.srt 21.48 KB
    24 Apriori/163 Apriori in Python - Step 2-tr.srt 21.48 KB
    38 Model Selection/281 Grid Search in R-tr.srt 21.42 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-es.srt 21.41 KB
    07 Support Vector Regression (SVR)/069 SVR in R-ja.srt 21.4 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-es.srt 21.39 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-es.srt 21.31 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-pt.srt 21.27 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-pt.srt 21.13 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-tr.srt 21.11 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-pt.srt 21.07 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-it.srt 21.07 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-it.srt 21.07 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-tr.srt 21.05 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-tr.srt 21.05 KB
    16 Naive Bayes/119 Naive Bayes in R-en.srt 21.04 KB
    32 Convolutional Neural Networks/242 Step 2 - Pooling-en.srt 21.04 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-ja.srt 20.97 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-es.srt 20.96 KB
    38 Model Selection/281 Grid Search in R-en.srt 20.94 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-tr.srt 20.89 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-es.srt 20.85 KB
    14 Support Vector Machine (SVM)/105 SVM in R-ja.srt 20.85 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-it.srt 20.81 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-tr.srt 20.76 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-ja.srt 20.75 KB
    31 Artificial Neural Networks/237 ANN in R - Step 4 (Last step)-en.srt 20.68 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-it.srt 20.66 KB
    06 Polynomial Regression/065 R Regression Template-ja.srt 20.63 KB
    27 Upper Confidence Bound (UCB)/176 Upper Confidence Bound in R - Step 1-en.srt 20.54 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-ja.srt 20.53 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-pt.srt 20.44 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-es.srt 20.42 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-it.srt 20.4 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-pt.srt 20.38 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-es.srt 20.38 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-es.srt 20.38 KB
    13 K-Nearest Neighbors (K-NN)/100 K-NN in Python-en.srt 20.37 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-pt.srt 20.31 KB
    39 XGBoost/284 XGBoost in Python - Step 2-es.srt 20.27 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-it.srt 20.27 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-tr.srt 20.23 KB
    38 Model Selection/277 k-Fold Cross Validation in Python-en.srt 20.22 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-es.srt 20.19 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-tr.srt 20.16 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-es.srt 20.14 KB
    39 XGBoost/284 XGBoost in Python - Step 2-pt.srt 20.08 KB
    21 K-Means Clustering/140 K-Means Clustering in R-es.srt 20.05 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-pt.srt 20.04 KB
    31 Artificial Neural Networks/224 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras-en.srt 20.01 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-it.srt 19.97 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-it.srt 19.95 KB
    39 XGBoost/284 XGBoost in Python - Step 2-it.srt 19.94 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-es.srt 19.93 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-pt.srt 19.93 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-pt.srt 19.91 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-tr.srt 19.9 KB
    24 Apriori/164 Apriori in Python - Step 3-es.srt 19.89 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-tr.srt 19.89 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-pt.srt 19.85 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-es.srt 19.84 KB
    24 Apriori/164 Apriori in Python - Step 3-pt.srt 19.83 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-es.srt 19.82 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-pt.srt 19.81 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-it.srt 19.8 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-it.srt 19.78 KB
    21 K-Means Clustering/140 K-Means Clustering in R-pt.srt 19.76 KB
    34 Principal Component Analysis (PCA)/267 PCA in R - Step 3-en.srt 19.76 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-es.srt 19.75 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-pt.srt 19.71 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-ja.srt 19.68 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-pt.srt 19.68 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-pt.srt 19.65 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/209 Natural Language Processing in R - Step 9-en.srt 19.6 KB
    21 K-Means Clustering/140 K-Means Clustering in R-it.srt 19.58 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-it.srt 19.58 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-it.srt 19.56 KB
    24 Apriori/164 Apriori in Python - Step 3-it.srt 19.56 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-tr.srt 19.52 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-it.srt 19.51 KB
    31 Artificial Neural Networks/228 ANN in Python - Step 5-en.srt 19.49 KB
    38 Model Selection/280 Grid Search in Python - Step 2-ja.srt 19.48 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-it.srt 19.48 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-ja.srt 19.46 KB
    39 XGBoost/284 XGBoost in Python - Step 2-tr.srt 19.45 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-tr.srt 19.43 KB
    15 Kernel SVM/108 The Kernel Trick-ja.srt 19.38 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-ja.srt 19.36 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-es.srt 19.34 KB
    32 Convolutional Neural Networks/251 CNN in Python - Step 4-en.srt 19.28 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-tr.srt 19.26 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-tr.srt 19.24 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-es.srt 19.24 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-ja.srt 19.23 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-pt.srt 19.2 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-tr.srt 19.2 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-es.srt 19.17 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-tr.srt 19.17 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-en.srt 19.11 KB
    21 K-Means Clustering/140 K-Means Clustering in R-tr.srt 19.09 KB
    31 Artificial Neural Networks/217 How do Neural Networks work-tr.srt 19.06 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-tr.srt 19.04 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-it.srt 19.01 KB
    24 Apriori/164 Apriori in Python - Step 3-tr.srt 18.99 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-pt.srt 18.97 KB
    31 Artificial Neural Networks/218 How do Neural Networks learn-en.srt 18.95 KB
    05 Multiple Linear Regression/045 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-en.srt 18.94 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-pt.srt 18.93 KB
    06 Polynomial Regression/065 R Regression Template-es.srt 18.93 KB
    07 Support Vector Regression (SVR)/069 SVR in R-es.srt 18.92 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-ja.srt 18.9 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-es.srt 18.89 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-tr.srt 18.89 KB
    39 XGBoost/284 XGBoost in Python - Step 2-en.srt 18.89 KB
    31 Artificial Neural Networks/236 ANN in R - Step 3-en.srt 18.88 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-es.srt 18.87 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-tr.srt 18.86 KB
    07 Support Vector Regression (SVR)/069 SVR in R-pt.srt 18.84 KB
    24 Apriori/164 Apriori in Python - Step 3-en.srt 18.82 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-pt.srt 18.8 KB
    21 K-Means Clustering/140 K-Means Clustering in R-en.srt 18.71 KB
    34 Principal Component Analysis (PCA)/265 PCA in R - Step 1-en.srt 18.7 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-it.srt 18.66 KB
    06 Polynomial Regression/065 R Regression Template-pt.srt 18.66 KB
    17 Decision Tree Classification/122 Decision Tree Classification in Python-en.srt 18.65 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-it.srt 18.65 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-it.srt 18.64 KB
    14 Support Vector Machine (SVM)/105 SVM in R-es.srt 18.6 KB
    06 Polynomial Regression/065 R Regression Template-it.srt 18.59 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-es.srt 18.59 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-pt.srt 18.59 KB
    07 Support Vector Regression (SVR)/069 SVR in R-it.srt 18.58 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-it.srt 18.55 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-tr.srt 18.54 KB
    14 Support Vector Machine (SVM)/105 SVM in R-pt.srt 18.46 KB
    32 Convolutional Neural Networks/248 CNN in Python - Step 1-en.srt 18.37 KB
    14 Support Vector Machine (SVM)/104 SVM in Python-en.srt 18.37 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-pt.srt 18.34 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/190 Natural Language Processing in Python - Step 1-en.srt 18.33 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-pt.srt 18.28 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-tr.srt 18.23 KB
    07 Support Vector Regression (SVR)/069 SVR in R-tr.srt 18.2 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-es.srt 18.17 KB
    06 Polynomial Regression/065 R Regression Template-tr.srt 18.15 KB
    06 Polynomial Regression/060 Python Regression Template-ja.srt 18.13 KB
    30 -------------------- Part 8 Deep Learning --------------------/213 What is Deep Learning-en.srt 18.13 KB
    25 Eclat/167 Eclat in R-ja.srt 18.08 KB
    14 Support Vector Machine (SVM)/105 SVM in R-it.srt 18.07 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-es.srt 18.05 KB
    14 Support Vector Machine (SVM)/105 SVM in R-tr.srt 17.99 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-tr.srt 17.98 KB
    07 Support Vector Regression (SVR)/069 SVR in R-en.srt 17.96 KB
    06 Polynomial Regression/065 R Regression Template-en.srt 17.96 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/012 Importing the Dataset-en.srt 17.93 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-pt.srt 17.9 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-it.srt 17.88 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-en.srt 17.79 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-ja.srt 17.76 KB
    21 K-Means Clustering/137 K-Means Selecting The Number Of Clusters-tr.srt 17.76 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-it.srt 17.75 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-it.srt 17.72 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-tr.srt 17.7 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-ja.srt 17.69 KB
    14 Support Vector Machine (SVM)/105 SVM in R-en.srt 17.68 KB
    34 Principal Component Analysis (PCA)/262 PCA in Python - Step 1-en.srt 17.66 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-es.srt 17.53 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/193 Natural Language Processing in Python - Step 4-en.srt 17.48 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-pt.srt 17.44 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-ja.srt 17.44 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-ja.srt 17.42 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-tr.srt 17.33 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-it.srt 17.33 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-tr.srt 17.32 KB
    15 Kernel SVM/108 The Kernel Trick-it.srt 17.27 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-it.srt 17.24 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-es.srt 17.18 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-pt.srt 17.18 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-ja.srt 17.15 KB
    15 Kernel SVM/108 The Kernel Trick-es.srt 17.08 KB
    15 Kernel SVM/108 The Kernel Trick-pt.srt 17.05 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-ja.srt 16.99 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-en.srt 16.98 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-pt.srt 16.9 KB
    22 Hierarchical Clustering/143 Hierarchical Clustering Using Dendrograms-tr.srt 16.89 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-it.srt 16.89 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-ja.srt 16.89 KB
    34 Principal Component Analysis (PCA)/266 PCA in R - Step 2-en.srt 16.89 KB
    06 Polynomial Regression/056 Polynomial Regression in Python - Step 1-en.srt 16.86 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-ja.srt 16.82 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-es.srt 16.8 KB
    06 Polynomial Regression/060 Python Regression Template-es.srt 16.79 KB
    38 Model Selection/280 Grid Search in Python - Step 2-es.srt 16.79 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-es.srt 16.75 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-tr.srt 16.69 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-ja.srt 16.69 KB
    06 Polynomial Regression/060 Python Regression Template-pt.srt 16.66 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-pt.srt 16.63 KB
    38 Model Selection/280 Grid Search in Python - Step 2-pt.srt 16.62 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-ja.srt 16.6 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-ja.srt 16.56 KB
    06 Polynomial Regression/057 Polynomial Regression in Python - Step 2-en.srt 16.55 KB
    38 Model Selection/280 Grid Search in Python - Step 2-it.srt 16.54 KB
    15 Kernel SVM/108 The Kernel Trick-en.srt 16.52 KB
    15 Kernel SVM/108 The Kernel Trick-tr.srt 16.52 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-ja.srt 16.52 KB
    06 Polynomial Regression/060 Python Regression Template-it.srt 16.45 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-it.srt 16.45 KB
    39 XGBoost/283 XGBoost in Python - Step 1-ja.srt 16.44 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-en.srt 16.42 KB
    31 Artificial Neural Networks/219 Gradient Descent-ja.srt 16.38 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-tr.srt 16.31 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-ja.srt 16.28 KB
    08 Decision Tree Regression/070 Decision Tree Regression Intuition-tr.srt 16.26 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-ja.srt 16.18 KB
    06 Polynomial Regression/060 Python Regression Template-tr.srt 16.15 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-es.srt 16.13 KB
    16 Naive Bayes/118 Naive Bayes in Python-ja.srt 16.07 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-pt.srt 16.03 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-es.srt 16.01 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-it.srt 15.96 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-pt.srt 15.95 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-es.srt 15.92 KB
    25 Eclat/167 Eclat in R-es.srt 15.92 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-es.srt 15.91 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-it.srt 15.9 KB
    38 Model Selection/280 Grid Search in Python - Step 2-tr.srt 15.88 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-pt.srt 15.86 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-es.srt 15.85 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-ja.srt 15.83 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-pt.srt 15.81 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-tr.srt 15.8 KB
    25 Eclat/167 Eclat in R-pt.srt 15.8 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/191 Natural Language Processing in Python - Step 2-en.srt 15.79 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-it.srt 15.77 KB
    06 Polynomial Regression/060 Python Regression Template-en.srt 15.77 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-pt.srt 15.77 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-ja.srt 15.72 KB
    25 Eclat/167 Eclat in R-it.srt 15.71 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-pt.srt 15.7 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-it.srt 15.69 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-es.srt 15.66 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-ja.srt 15.65 KB
    19 Evaluating Classification Models Performance/131 CAP Curve-en.srt 15.6 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-es.srt 15.58 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-it.srt 15.57 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-pt.srt 15.53 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-it.srt 15.49 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-es.srt 15.45 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-es.srt 15.44 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-it.srt 15.43 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-it.srt 15.42 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-ja.srt 15.41 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-pt.srt 15.35 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-en.srt 15.34 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-es.srt 15.34 KB
    38 Model Selection/280 Grid Search in Python - Step 2-en.srt 15.32 KB
    16 Naive Bayes/116 Naive Bayes Intuition (Extras)-tr.srt 15.3 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-it.srt 15.25 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-it.srt 15.22 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-pt.srt 15.22 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-pt.srt 15.2 KB
    25 Eclat/167 Eclat in R-en.srt 15.19 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-en.srt 15.17 KB
    14 Support Vector Machine (SVM)/102 SVM Intuition-tr.srt 15.14 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-tr.srt 15.12 KB
    25 Eclat/167 Eclat in R-tr.srt 15.11 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-tr.srt 15.04 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-ja.srt 15 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-tr.srt 14.93 KB
    05 Multiple Linear Regression/044 Multiple Linear Regression in Python - Backward Elimination - Preparation-en.srt 14.93 KB
    04 Simple Linear Regression/025 Simple Linear Regression in Python - Step 1-en.srt 14.9 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-tr.srt 14.87 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-en.srt 14.86 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-en.srt 14.84 KB
    34 Principal Component Analysis (PCA)/264 PCA in Python - Step 3-en.srt 14.81 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-tr.srt 14.79 KB
    06 Polynomial Regression/064 Polynomial Regression in R - Step 4-tr.srt 14.78 KB
    06 Polynomial Regression/062 Polynomial Regression in R - Step 2-en.srt 14.71 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-pt.srt 14.67 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-es.srt 14.63 KB
    05 Multiple Linear Regression/049 Multiple Linear Regression in R - Step 2-tr.srt 14.59 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-pt.srt 14.58 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-it.srt 14.58 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-it.srt 14.57 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-es.srt 14.57 KB
    31 Artificial Neural Networks/219 Gradient Descent-es.srt 14.57 KB
    39 XGBoost/283 XGBoost in Python - Step 1-es.srt 14.5 KB
    31 Artificial Neural Networks/219 Gradient Descent-pt.srt 14.49 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-it.srt 14.46 KB
    39 XGBoost/283 XGBoost in Python - Step 1-pt.srt 14.45 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-ja.srt 14.44 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-ja.srt 14.41 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-es.srt 14.41 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-ja.srt 14.39 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-es.srt 14.39 KB
    31 Artificial Neural Networks/219 Gradient Descent-it.srt 14.38 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/199 Natural Language Processing in Python - Step 10-en.srt 14.38 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-ja.srt 14.37 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-pt.srt 14.36 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-pt.srt 14.33 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-pt.srt 14.32 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-es.srt 14.31 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-es.srt 14.3 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-ja.srt 14.3 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-pt.srt 14.27 KB
    39 XGBoost/283 XGBoost in Python - Step 1-it.srt 14.24 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-ja.srt 14.21 KB
    16 Naive Bayes/118 Naive Bayes in Python-es.srt 14.09 KB
    31 Artificial Neural Networks/219 Gradient Descent-tr.srt 14.08 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-it.srt 14.07 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-en.srt 14.06 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-it.srt 14.04 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-it.srt 14.04 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-tr.srt 14.03 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-tr.srt 14.03 KB
    31 Artificial Neural Networks/219 Gradient Descent-en.srt 14.02 KB
    22 Hierarchical Clustering/141 Hierarchical Clustering Intuition-tr.srt 14.01 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-tr.srt 13.97 KB
    31 Artificial Neural Networks/216 The Activation Function-ja.srt 13.97 KB
    16 Naive Bayes/118 Naive Bayes in Python-pt.srt 13.95 KB
    10 Evaluating Regression Models Performance/079 Adjusted R-Squared Intuition-en.srt 13.92 KB
    39 XGBoost/283 XGBoost in Python - Step 1-tr.srt 13.9 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-es.srt 13.9 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-en.srt 13.81 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-tr.srt 13.8 KB
    16 Naive Bayes/118 Naive Bayes in Python-it.srt 13.76 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-es.srt 13.74 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-it.srt 13.73 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-ja.srt 13.69 KB
    16 Naive Bayes/118 Naive Bayes in Python-tr.srt 13.68 KB
    39 XGBoost/283 XGBoost in Python - Step 1-en.srt 13.66 KB
    05 Multiple Linear Regression/046 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-en.srt 13.64 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-ja.srt 13.64 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/019 And here is our Data Preprocessing Template-en.srt 13.62 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-it.srt 13.61 KB
    06 Polynomial Regression/061 Polynomial Regression in R - Step 1-en.srt 13.6 KB
    22 Hierarchical Clustering/142 Hierarchical Clustering How Dendrograms Work-tr.srt 13.59 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-pt.srt 13.59 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-ja.srt 13.58 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-it.srt 13.58 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-pt.srt 13.53 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-pt.srt 13.36 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-es.srt 13.32 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-tr.srt 13.28 KB
    16 Naive Bayes/118 Naive Bayes in Python-en.srt 13.21 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-ja.srt 13.13 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-ja.srt 13.07 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-tr.srt 12.99 KB
    32 Convolutional Neural Networks/257 CNN in Python - Step 10-en.srt 12.97 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-es.srt 12.96 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-tr.srt 12.95 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-pt.srt 12.95 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-ja.srt 12.91 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/202 Natural Language Processing in R - Step 2-en.srt 12.88 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-ja.srt 12.88 KB
    10 Evaluating Regression Models Performance/081 Interpreting Linear Regression Coefficients-en.srt 12.85 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-es.srt 12.8 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-es.srt 12.79 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-es.srt 12.75 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-pt.srt 12.75 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-pt.srt 12.7 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-pt.srt 12.7 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-it.srt 12.7 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-pt.srt 12.64 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-es.srt 12.64 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-tr.srt 12.63 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-it.srt 12.62 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-es.srt 12.61 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-it.srt 12.58 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-it.srt 12.58 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-it.srt 12.56 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-ja.srt 12.54 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-ja.srt 12.53 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-pt.srt 12.53 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-tr.srt 12.5 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-ja.srt 12.48 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-en.srt 12.47 KB
    10 Evaluating Regression Models Performance/080 Evaluating Regression Models Performance - Homeworks Final Part-en.srt 12.44 KB
    17 Decision Tree Classification/120 Decision Tree Classification Intuition-en.srt 12.4 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-ja.srt 12.37 KB
    31 Artificial Neural Networks/216 The Activation Function-pt.srt 12.35 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-pt.srt 12.31 KB
    21 K-Means Clustering/136 K-Means Random Initialization Trap-tr.srt 12.3 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-it.srt 12.29 KB
    31 Artificial Neural Networks/216 The Activation Function-es.srt 12.28 KB
    15 Kernel SVM/107 Mapping to a higher dimension-ja.srt 12.26 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-tr.srt 12.19 KB
    31 Artificial Neural Networks/216 The Activation Function-it.srt 12.18 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-es.srt 12.17 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-es.srt 12.14 KB
    31 Artificial Neural Networks/220 Stochastic Gradient Descent-en.srt 12.14 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-es.srt 12.12 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-tr.srt 12.11 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-ja.srt 12.09 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-it.srt 12.09 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-pt.srt 12.09 KB
    31 Artificial Neural Networks/216 The Activation Function-en.srt 12.03 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-it.srt 12 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-ja.srt 11.98 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-tr.srt 11.98 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-tr.srt 11.97 KB
    31 Artificial Neural Networks/216 The Activation Function-tr.srt 11.95 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-pt.srt 11.9 KB
    04 Simple Linear Regression/026 Simple Linear Regression in Python - Step 2-en.srt 11.88 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-tr.srt 11.84 KB
    01 Welcome to the course/005 Installing Python and Anaconda (Mac Linux Windows)-en.srt 11.82 KB
    34 Principal Component Analysis (PCA)/263 PCA in Python - Step 2-en.srt 11.81 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-it.srt 11.81 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-es.srt 11.61 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-pt.srt 11.49 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-es.srt 11.43 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-it.srt 11.41 KB
    05 Multiple Linear Regression/052 Multiple Linear Regression in R - Backward Elimination - Homework Solution-en.srt 11.39 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-ja.srt 11.39 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-tr.srt 11.37 KB
    05 Multiple Linear Regression/048 Multiple Linear Regression in R - Step 1-en.srt 11.36 KB
    07 Support Vector Regression (SVR)/067 SVR Intuition-en.srt 11.36 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-pt.srt 11.36 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-it.srt 11.29 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-ja.srt 11.29 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-es.srt 11.28 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-pt.srt 11.27 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-es.srt 11.26 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-es.srt 11.23 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-ja.srt 11.21 KB
    15 Kernel SVM/107 Mapping to a higher dimension-pt.srt 11.19 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-it.srt 11.17 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-pt.srt 11.17 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-en.srt 11.14 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-it.srt 11.12 KB
    28 Thompson Sampling/181 Algorithm Comparison UCB vs Thompson Sampling-tr.srt 11.08 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-tr.srt 11.08 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-en.srt 11.07 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-pt.srt 11.06 KB
    15 Kernel SVM/107 Mapping to a higher dimension-es.srt 11.05 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-es.srt 11.02 KB
    15 Kernel SVM/107 Mapping to a higher dimension-it.srt 10.99 KB
    15 Kernel SVM/107 Mapping to a higher dimension-tr.srt 10.98 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-it.srt 10.95 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-pt.srt 10.9 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-en.srt 10.89 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-ja.srt 10.88 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-it.srt 10.86 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-es.srt 10.86 KB
    31 Artificial Neural Networks/231 ANN in Python - Step 8-tr.srt 10.86 KB
    19 Evaluating Classification Models Performance/128 False Positives False Negatives-tr.srt 10.86 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-pt.srt 10.85 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-es.srt 10.85 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-it.srt 10.76 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-ja.srt 10.76 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-es.srt 10.76 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-ja.srt 10.74 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-es.srt 10.72 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-pt.srt 10.71 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-pt.srt 10.71 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-tr.srt 10.71 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-ja.srt 10.71 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-ja.srt 10.69 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-tr.srt 10.69 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/010 Get the dataset-en.srt 10.69 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-it.srt 10.68 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-it.srt 10.68 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/194 Natural Language Processing in Python - Step 5-en.srt 10.66 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-ja.srt 10.65 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-pt.srt 10.64 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-it.srt 10.59 KB
    15 Kernel SVM/107 Mapping to a higher dimension-en.srt 10.54 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-tr.srt 10.53 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-ja.srt 10.53 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-pt.srt 10.52 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-tr.srt 10.41 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-ja.srt 10.39 KB
    31 Artificial Neural Networks/233 ANN in Python - Step 10-en.srt 10.35 KB
    05 Multiple Linear Regression/037 Multiple Linear Regression Intuition - Step 3-en.srt 10.33 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-ja.srt 10.31 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-ja.srt 10.31 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-it.srt 10.28 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-tr.srt 10.25 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-tr.srt 10.17 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-es.srt 10.13 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/203 Natural Language Processing in R - Step 3-en.srt 10.12 KB
    31 Artificial Neural Networks/235 ANN in R - Step 2-en.srt 10.12 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-es.srt 10.11 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-tr.srt 10.05 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-it.srt 10.01 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-ja.srt 10 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-ja.srt 9.96 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-es.srt 9.92 KB
    09 Random Forest Regression/074 Random Forest Regression Intuition-en.srt 9.88 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-pt.srt 9.87 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-ja.srt 9.87 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-it.srt 9.86 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-ja.srt 9.85 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-it.srt 9.85 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-pt.srt 9.84 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/196 Natural Language Processing in Python - Step 7-en.srt 9.8 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-es.srt 9.78 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-pt.srt 9.75 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-pt.srt 9.73 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-es.srt 9.7 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-ja.srt 9.69 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-pt.srt 9.69 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-es.srt 9.66 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-es.srt 9.66 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-pt.srt 9.65 KB
    25 Eclat/165 Eclat Intuition-ja.srt 9.65 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-it.srt 9.64 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-it.srt 9.6 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-es.srt 9.56 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-tr.srt 9.51 KB
    31 Artificial Neural Networks/232 ANN in Python - Step 9-en.srt 9.51 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-en.srt 9.49 KB
    04 Simple Linear Regression/027 Simple Linear Regression in Python - Step 3-tr.srt 9.49 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-pt.srt 9.48 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-it.srt 9.47 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-it.srt 9.47 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-tr.srt 9.38 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-tr.srt 9.36 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-pt.srt 9.35 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-es.srt 9.26 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-tr.srt 9.24 KB
    01 Welcome to the course/002 Why Machine Learning is the Future-en.srt 9.23 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-pt.srt 9.2 KB
    32 Convolutional Neural Networks/241 Step 1(b) - ReLU Layer-en.srt 9.2 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-es.srt 9.18 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-es.srt 9.17 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-en.srt 9.16 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-en.srt 9.15 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-ja.srt 9.15 KB
    32 Convolutional Neural Networks/254 CNN in Python - Step 7-en.srt 9.12 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-it.srt 9.11 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-it.srt 9.11 KB
    22 Hierarchical Clustering/146 HC in Python - Step 2-tr.srt 9.11 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-tr.srt 9.09 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-ja.srt 9.05 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-tr.srt 9.02 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-pt.srt 9.01 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-ja.srt 9.01 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-it.srt 9 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-es.srt 9 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-es.srt 8.99 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-es.srt 8.97 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-es.srt 8.96 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-ja.srt 8.96 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-pt.srt 8.93 KB
    16 Naive Bayes/115 Naive Bayes Intuition (Challenge Reveal)-tr.srt 8.91 KB
    19 Evaluating Classification Models Performance/132 CAP Curve Analysis-en.srt 8.91 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-it.srt 8.89 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-ja.srt 8.87 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-es.srt 8.87 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-pt.srt 8.87 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-ja.srt 8.87 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-it.srt 8.84 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-pt.srt 8.84 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-it.srt 8.84 KB
    01 Welcome to the course/007 Installing R and R Studio (Mac Linux Windows)-en.srt 8.83 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-pt.srt 8.83 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-ja.srt 8.82 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-it.srt 8.79 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-ja.srt 8.76 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-it.srt 8.73 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-tr.srt 8.72 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-tr.srt 8.72 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-pt.srt 8.7 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-es.srt 8.7 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-es.srt 8.67 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-pt.srt 8.67 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-tr.srt 8.67 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-tr.srt 8.64 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-ja.srt 8.64 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-tr.srt 8.6 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-it.srt 8.6 KB
    25 Eclat/165 Eclat Intuition-es.srt 8.58 KB
    25 Eclat/165 Eclat Intuition-pt.srt 8.57 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-en.srt 8.56 KB
    12 Logistic Regression/092 Logistic Regression in R - Step 1-en.srt 8.55 KB
    04 Simple Linear Regression/030 Simple Linear Regression in R - Step 2-tr.srt 8.53 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-ja.srt 8.5 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-pt.srt 8.49 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-it.srt 8.44 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-ja.srt 8.42 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-tr.srt 8.41 KB
    12 Logistic Regression/086 Logistic Regression in Python - Step 1-en.srt 8.39 KB
    25 Eclat/165 Eclat Intuition-it.srt 8.35 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/206 Natural Language Processing in R - Step 6-en.srt 8.35 KB
    31 Artificial Neural Networks/223 Business Problem Description-ja.srt 8.34 KB
    06 Polynomial Regression/059 Polynomial Regression in Python - Step 4-en.srt 8.33 KB
    31 Artificial Neural Networks/221 Backpropagation-ja.srt 8.32 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-es.srt 8.32 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-tr.srt 8.31 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-es.srt 8.3 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-it.srt 8.28 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-es.srt 8.27 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-es.srt 8.27 KB
    14 Support Vector Machine (SVM)/105 SVM.zip 8.27 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/198 Natural Language Processing in Python - Step 9-en.srt 8.25 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-ja.srt 8.23 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-ja.srt 8.23 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-pt.srt 8.23 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-it.srt 8.23 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-it.srt 8.21 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-ja.srt 8.19 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-es.srt 8.18 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-es.srt 8.15 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-pt.srt 8.11 KB
    25 Eclat/165 Eclat Intuition-en.srt 8.1 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-pt.srt 8.09 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-es.srt 8.07 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/011 Importing the Libraries-en.srt 8.06 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-pt.srt 8.06 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-it.srt 8.05 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-ja.srt 8.05 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-es.srt 8.04 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-tr.srt 8.03 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/208 Natural Language Processing in R - Step 8-en.srt 8.01 KB
    04 Simple Linear Regression/023 Simple Linear Regression Intuition - Step 1-en.srt 8.01 KB
    25 Eclat/165 Eclat Intuition-tr.srt 8 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-it.srt 7.99 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-pt.srt 7.98 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-pt.srt 7.97 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-ja.srt 7.96 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-en.srt 7.94 KB
    05 Multiple Linear Regression/043 Multiple Linear Regression in Python - Step 3-tr.srt 7.91 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-pt.srt 7.91 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-es.srt 7.87 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-es.srt 7.87 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-pt.srt 7.87 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-pt.srt 7.85 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-tr.srt 7.84 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-en.srt 7.83 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-it.srt 7.82 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-ja.srt 7.82 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-it.srt 7.81 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-it.srt 7.8 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-tr.srt 7.8 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-pt.srt 7.8 KB
    12 Logistic Regression/097 R Classification Template-ja.srt 7.79 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-it.srt 7.74 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-en.srt 7.74 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-ja.srt 7.73 KB
    22 Hierarchical Clustering/151 HC in R - Step 2-tr.srt 7.7 KB
    31 Artificial Neural Networks/223 Business Problem Description-es.srt 7.7 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-es.srt 7.68 KB
    13 K-Nearest Neighbors (K-NN)/098 K-Nearest Neighbor Intuition-tr.srt 7.67 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-it.srt 7.66 KB
    31 Artificial Neural Networks/223 Business Problem Description-pt.srt 7.65 KB
    32 Convolutional Neural Networks/253 CNN in Python - Step 6-en.srt 7.6 KB
    31 Artificial Neural Networks/223 Business Problem Description-it.srt 7.59 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-tr.srt 7.58 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-pt.srt 7.58 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-ja.srt 7.57 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-en.srt 7.54 KB
    06 Polynomial Regression/054 Polynomial Regression Intuition-tr.srt 7.54 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-es.srt 7.54 KB
    31 Artificial Neural Networks/223 Business Problem Description-tr.srt 7.5 KB
    32 Convolutional Neural Networks/252 CNN in Python - Step 5-en.srt 7.48 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-tr.srt 7.47 KB
    31 Artificial Neural Networks/221 Backpropagation-es.srt 7.47 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-tr.srt 7.46 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-it.srt 7.44 KB
    31 Artificial Neural Networks/221 Backpropagation-pt.srt 7.44 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-en.srt 7.44 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-pt.srt 7.41 KB
    31 Artificial Neural Networks/221 Backpropagation-it.srt 7.41 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-pt.srt 7.4 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-es.srt 7.4 KB
    04 Simple Linear Regression/029 Simple Linear Regression in R - Step 1-en.srt 7.39 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-pt.srt 7.38 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-it.srt 7.37 KB
    22 Hierarchical Clustering/147 HC in Python - Step 3-tr.srt 7.36 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-ja.srt 7.31 KB
    31 Artificial Neural Networks/223 Business Problem Description-en.srt 7.3 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-it.srt 7.29 KB
    22 Hierarchical Clustering/145 HC in Python - Step 1-en.srt 7.29 KB
    12 Logistic Regression/091 Python Classification Template-ja.srt 7.27 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-it.srt 7.27 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-es.srt 7.24 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-en.srt 7.23 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-tr.srt 7.22 KB
    31 Artificial Neural Networks/221 Backpropagation-tr.srt 7.22 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-es.srt 7.21 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-pt.srt 7.21 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-es.srt 7.21 KB
    32 Convolutional Neural Networks/245 Summary-ja.srt 7.15 KB
    19 Evaluating Classification Models Performance/129 Confusion Matrix-tr.srt 7.14 KB
    12 Logistic Regression/094 Logistic Regression in R - Step 3-en.srt 7.14 KB
    31 Artificial Neural Networks/221 Backpropagation-en.srt 7.11 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-tr.srt 7.1 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/188 Natural Language Processing Intuition-en.srt 7.07 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-pt.srt 7.07 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-tr.srt 7.06 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-it.srt 7.06 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-it.srt 7.04 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-es.srt 7.03 KB
    12 Logistic Regression/097 R Classification Template-tr.srt 6.93 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-tr.srt 6.92 KB
    10 Evaluating Regression Models Performance/078 R-Squared Intuition-en.srt 6.9 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-es.srt 6.89 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-pt.srt 6.89 KB
    12 Logistic Regression/097 R Classification Template-es.srt 6.88 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-tr.srt 6.87 KB
    12 Logistic Regression/089 Logistic Regression in Python - Step 4-en.srt 6.87 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-it.srt 6.82 KB
    18 Random Forest Classification/124 Random Forest Classification Intuition-en.srt 6.81 KB
    12 Logistic Regression/097 R Classification Template-pt.srt 6.79 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-pt.srt 6.78 KB
    05 Multiple Linear Regression/050 Multiple Linear Regression in R - Step 3-en.srt 6.78 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-es.srt 6.77 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-pt.srt 6.75 KB
    12 Logistic Regression/097 R Classification Template-it.srt 6.74 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-it.srt 6.67 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-tr.srt 6.65 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-ja.srt 6.64 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-it.srt 6.61 KB
    01 Welcome to the course/001 Applications of Machine Learning-ja.srt 6.58 KB
    32 Convolutional Neural Networks/238 Plan of attack-ja.srt 6.58 KB
    22 Hierarchical Clustering/149 HC in Python - Step 5-en.srt 6.55 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-ja.srt 6.54 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-ja.srt 6.54 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-es.srt 6.53 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-tr.srt 6.5 KB
    32 Convolutional Neural Networks/245 Summary-es.srt 6.47 KB
    12 Logistic Regression/097 R Classification Template-en.srt 6.46 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-pt.srt 6.45 KB
    32 Convolutional Neural Networks/245 Summary-pt.srt 6.43 KB
    12 Logistic Regression/091 Python Classification Template-es.srt 6.42 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-it.srt 6.4 KB
    32 Convolutional Neural Networks/245 Summary-it.srt 6.39 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-tr.srt 6.38 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-ja.srt 6.36 KB
    12 Logistic Regression/091 Python Classification Template-it.srt 6.29 KB
    12 Logistic Regression/091 Python Classification Template-pt.srt 6.24 KB
    22 Hierarchical Clustering/148 HC in Python - Step 4-en.srt 6.23 KB
    12 Logistic Regression/091 Python Classification Template-tr.srt 6.22 KB
    32 Convolutional Neural Networks/245 Summary-tr.srt 6.19 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-ja.srt 6.16 KB
    22 Hierarchical Clustering/150 HC in R - Step 1-en.srt 6.1 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-ja.srt 6.07 KB
    15 Kernel SVM/109 Types of Kernel Functions-ja.srt 6.03 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-ja.srt 6.03 KB
    32 Convolutional Neural Networks/245 Summary-en.srt 6.02 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-es.srt 6 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-ja.srt 5.93 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-it.srt 5.93 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-pt.srt 5.9 KB
    12 Logistic Regression/091 Python Classification Template-en.srt 5.85 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-es.srt 5.81 KB
    01 Welcome to the course/001 Applications of Machine Learning-pt.srt 5.73 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-pt.srt 5.72 KB
    01 Welcome to the course/001 Applications of Machine Learning-it.srt 5.71 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-ja.srt 5.7 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-tr.srt 5.7 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-es.srt 5.69 KB
    04 Simple Linear Regression/021 How to get the dataset-ja.srt 5.69 KB
    05 Multiple Linear Regression/033 How to get the dataset-ja.srt 5.69 KB
    06 Polynomial Regression/055 How to get the dataset-ja.srt 5.69 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-ja.srt 5.69 KB
    08 Decision Tree Regression/071 How to get the dataset-ja.srt 5.69 KB
    09 Random Forest Regression/075 How to get the dataset-ja.srt 5.69 KB
    12 Logistic Regression/085 How to get the dataset-ja.srt 5.69 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-ja.srt 5.69 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-ja.srt 5.69 KB
    15 Kernel SVM/110 How to get the dataset-ja.srt 5.69 KB
    16 Naive Bayes/117 How to get the dataset-ja.srt 5.69 KB
    17 Decision Tree Classification/121 How to get the dataset-ja.srt 5.69 KB
    18 Random Forest Classification/125 How to get the dataset-ja.srt 5.69 KB
    21 K-Means Clustering/138 How to get the dataset-ja.srt 5.69 KB
    22 Hierarchical Clustering/144 How to get the dataset-ja.srt 5.69 KB
    24 Apriori/158 How to get the dataset-ja.srt 5.69 KB
    25 Eclat/166 How to get the dataset-ja.srt 5.69 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-ja.srt 5.69 KB
    28 Thompson Sampling/182 How to get the dataset-ja.srt 5.69 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-ja.srt 5.69 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-it.srt 5.69 KB
    31 Artificial Neural Networks/222 How to get the dataset-ja.srt 5.69 KB
    32 Convolutional Neural Networks/247 How to get the dataset-ja.srt 5.69 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-ja.srt 5.69 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-ja.srt 5.69 KB
    36 Kernel PCA/272 How to get the dataset-ja.srt 5.69 KB
    38 Model Selection/276 How to get the dataset-ja.srt 5.69 KB
    39 XGBoost/282 How to get the dataset-ja.srt 5.69 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-it.srt 5.68 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-pt.srt 5.68 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-ja.srt 5.66 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-pt.srt 5.65 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-es.srt 5.63 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-ja.srt 5.63 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-ja.srt 5.62 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-tr.srt 5.59 KB
    40 Bonus Lectures/286 YOUR SPECIAL BONUS.html 5.58 KB
    28 Thompson Sampling/184 Thompson Sampling in Python - Step 2-en.srt 5.58 KB
    01 Welcome to the course/001 Applications of Machine Learning-es.srt 5.57 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-tr.srt 5.56 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-it.srt 5.53 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-tr.srt 5.52 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-ja.srt 5.52 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-es.srt 5.52 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-es.srt 5.5 KB
    31 Artificial Neural Networks/230 ANN in Python - Step 7-en.srt 5.49 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-it.srt 5.49 KB
    01 Welcome to the course/001 Applications of Machine Learning-tr.srt 5.48 KB
    32 Convolutional Neural Networks/238 Plan of attack-tr.srt 5.48 KB
    05 Multiple Linear Regression/034 Dataset Business Problem Description-en.srt 5.47 KB
    32 Convolutional Neural Networks/238 Plan of attack-es.srt 5.45 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-pt.srt 5.43 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-it.srt 5.43 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-es.srt 5.42 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-ja.srt 5.4 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-it.srt 5.39 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-pt.srt 5.39 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-ja.srt 5.37 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/207 Natural Language Processing in R - Step 7-en.srt 5.37 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-pt.srt 5.36 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-ja.srt 5.35 KB
    32 Convolutional Neural Networks/238 Plan of attack-pt.srt 5.35 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-it.srt 5.34 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-pt.srt 5.33 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-ja.srt 5.32 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-es.srt 5.32 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-pt.srt 5.3 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-en.srt 5.3 KB
    01 Welcome to the course/001 Applications of Machine Learning-en.srt 5.3 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-es.srt 5.3 KB
    32 Convolutional Neural Networks/238 Plan of attack-it.srt 5.28 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-es.srt 5.27 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-it.srt 5.24 KB
    32 Convolutional Neural Networks/238 Plan of attack-en.srt 5.24 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-tr.srt 5.22 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-tr.srt 5.21 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-pt.srt 5.21 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-tr.srt 5.2 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-it.srt 5.17 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-tr.srt 5.17 KB
    15 Kernel SVM/109 Types of Kernel Functions-es.srt 5.16 KB
    15 Kernel SVM/109 Types of Kernel Functions-pt.srt 5.15 KB
    15 Kernel SVM/106 Kernel SVM Intuition-ja.srt 5.12 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-en.srt 5.11 KB
    35 Linear Discriminant Analysis (LDA)/268 Linear Discriminant Analysis (LDA) Intuition-tr.srt 5.11 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-ja.srt 5.11 KB
    28 Thompson Sampling/186 Thompson Sampling in R - Step 2-en.srt 5.09 KB
    04 Simple Linear Regression/021 How to get the dataset-es.srt 5.09 KB
    05 Multiple Linear Regression/033 How to get the dataset-es.srt 5.09 KB
    06 Polynomial Regression/055 How to get the dataset-es.srt 5.09 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-es.srt 5.09 KB
    08 Decision Tree Regression/071 How to get the dataset-es.srt 5.09 KB
    09 Random Forest Regression/075 How to get the dataset-es.srt 5.09 KB
    12 Logistic Regression/085 How to get the dataset-es.srt 5.09 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-es.srt 5.09 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-es.srt 5.09 KB
    15 Kernel SVM/110 How to get the dataset-es.srt 5.09 KB
    16 Naive Bayes/117 How to get the dataset-es.srt 5.09 KB
    17 Decision Tree Classification/121 How to get the dataset-es.srt 5.09 KB
    18 Random Forest Classification/125 How to get the dataset-es.srt 5.09 KB
    21 K-Means Clustering/138 How to get the dataset-es.srt 5.09 KB
    22 Hierarchical Clustering/144 How to get the dataset-es.srt 5.09 KB
    24 Apriori/158 How to get the dataset-es.srt 5.09 KB
    25 Eclat/166 How to get the dataset-es.srt 5.09 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-es.srt 5.09 KB
    28 Thompson Sampling/182 How to get the dataset-es.srt 5.09 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-es.srt 5.09 KB
    31 Artificial Neural Networks/222 How to get the dataset-es.srt 5.09 KB
    32 Convolutional Neural Networks/247 How to get the dataset-es.srt 5.09 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-es.srt 5.09 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-es.srt 5.09 KB
    36 Kernel PCA/272 How to get the dataset-es.srt 5.09 KB
    38 Model Selection/276 How to get the dataset-es.srt 5.09 KB
    39 XGBoost/282 How to get the dataset-es.srt 5.09 KB
    31 Artificial Neural Networks/214 Plan of attack-ja.srt 5.08 KB
    15 Kernel SVM/109 Types of Kernel Functions-it.srt 5.07 KB
    04 Simple Linear Regression/031 Simple Linear Regression in R - Step 3-tr.srt 5.05 KB
    34 Principal Component Analysis (PCA)/260 Principal Component Analysis (PCA) Intuition-en.srt 5.05 KB
    15 Kernel SVM/109 Types of Kernel Functions-tr.srt 5.04 KB
    04 Simple Linear Regression/021 How to get the dataset-pt.srt 5.03 KB
    05 Multiple Linear Regression/033 How to get the dataset-pt.srt 5.03 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-pt.srt 5.03 KB
    08 Decision Tree Regression/071 How to get the dataset-pt.srt 5.03 KB
    09 Random Forest Regression/075 How to get the dataset-pt.srt 5.03 KB
    12 Logistic Regression/085 How to get the dataset-pt.srt 5.03 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-pt.srt 5.03 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-pt.srt 5.03 KB
    15 Kernel SVM/110 How to get the dataset-pt.srt 5.03 KB
    16 Naive Bayes/117 How to get the dataset-pt.srt 5.03 KB
    17 Decision Tree Classification/121 How to get the dataset-pt.srt 5.03 KB
    18 Random Forest Classification/125 How to get the dataset-pt.srt 5.03 KB
    21 K-Means Clustering/138 How to get the dataset-pt.srt 5.03 KB
    22 Hierarchical Clustering/144 How to get the dataset-pt.srt 5.03 KB
    24 Apriori/158 How to get the dataset-pt.srt 5.03 KB
    25 Eclat/166 How to get the dataset-pt.srt 5.03 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-pt.srt 5.03 KB
    28 Thompson Sampling/182 How to get the dataset-pt.srt 5.03 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-pt.srt 5.03 KB
    31 Artificial Neural Networks/222 How to get the dataset-pt.srt 5.03 KB
    32 Convolutional Neural Networks/247 How to get the dataset-pt.srt 5.03 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-pt.srt 5.03 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-pt.srt 5.03 KB
    36 Kernel PCA/272 How to get the dataset-pt.srt 5.03 KB
    38 Model Selection/276 How to get the dataset-pt.srt 5.03 KB
    39 XGBoost/282 How to get the dataset-pt.srt 5.03 KB
    06 Polynomial Regression/055 How to get the dataset-pt.srt 5.02 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-es.srt 5.01 KB
    27 Upper Confidence Bound (UCB)/175 Upper Confidence Bound in Python - Step 4-en.srt 4.99 KB
    31 Artificial Neural Networks/226 ANN in Python - Step 3-en.srt 4.97 KB
    04 Simple Linear Regression/021 How to get the dataset-it.srt 4.95 KB
    05 Multiple Linear Regression/033 How to get the dataset-it.srt 4.95 KB
    06 Polynomial Regression/055 How to get the dataset-it.srt 4.95 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-it.srt 4.95 KB
    08 Decision Tree Regression/071 How to get the dataset-it.srt 4.95 KB
    09 Random Forest Regression/075 How to get the dataset-it.srt 4.95 KB
    12 Logistic Regression/085 How to get the dataset-it.srt 4.95 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-it.srt 4.95 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-it.srt 4.95 KB
    15 Kernel SVM/110 How to get the dataset-it.srt 4.95 KB
    16 Naive Bayes/117 How to get the dataset-it.srt 4.95 KB
    17 Decision Tree Classification/121 How to get the dataset-it.srt 4.95 KB
    18 Random Forest Classification/125 How to get the dataset-it.srt 4.95 KB
    21 K-Means Clustering/138 How to get the dataset-it.srt 4.95 KB
    22 Hierarchical Clustering/144 How to get the dataset-it.srt 4.95 KB
    24 Apriori/158 How to get the dataset-it.srt 4.95 KB
    25 Eclat/166 How to get the dataset-it.srt 4.95 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-it.srt 4.95 KB
    28 Thompson Sampling/182 How to get the dataset-it.srt 4.95 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-it.srt 4.95 KB
    31 Artificial Neural Networks/222 How to get the dataset-it.srt 4.95 KB
    32 Convolutional Neural Networks/247 How to get the dataset-it.srt 4.95 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-it.srt 4.95 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-it.srt 4.95 KB
    36 Kernel PCA/272 How to get the dataset-it.srt 4.95 KB
    38 Model Selection/276 How to get the dataset-it.srt 4.95 KB
    39 XGBoost/282 How to get the dataset-it.srt 4.95 KB
    15 Kernel SVM/109 Types of Kernel Functions-en.srt 4.94 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-ja.srt 4.93 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-pt.srt 4.93 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-it.srt 4.88 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-es.srt 4.88 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-pt.srt 4.87 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-it.srt 4.87 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-it.srt 4.86 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-es.srt 4.84 KB
    04 Simple Linear Regression/021 How to get the dataset-tr.srt 4.84 KB
    05 Multiple Linear Regression/033 How to get the dataset-tr.srt 4.84 KB
    06 Polynomial Regression/055 How to get the dataset-tr.srt 4.84 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-tr.srt 4.84 KB
    08 Decision Tree Regression/071 How to get the dataset-tr.srt 4.84 KB
    09 Random Forest Regression/075 How to get the dataset-tr.srt 4.84 KB
    12 Logistic Regression/085 How to get the dataset-tr.srt 4.84 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-tr.srt 4.84 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-tr.srt 4.84 KB
    15 Kernel SVM/110 How to get the dataset-tr.srt 4.84 KB
    16 Naive Bayes/117 How to get the dataset-tr.srt 4.84 KB
    17 Decision Tree Classification/121 How to get the dataset-tr.srt 4.84 KB
    18 Random Forest Classification/125 How to get the dataset-tr.srt 4.84 KB
    21 K-Means Clustering/138 How to get the dataset-tr.srt 4.84 KB
    22 Hierarchical Clustering/144 How to get the dataset-tr.srt 4.84 KB
    24 Apriori/158 How to get the dataset-tr.srt 4.84 KB
    25 Eclat/166 How to get the dataset-tr.srt 4.84 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-tr.srt 4.84 KB
    28 Thompson Sampling/182 How to get the dataset-tr.srt 4.84 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-tr.srt 4.84 KB
    31 Artificial Neural Networks/222 How to get the dataset-tr.srt 4.84 KB
    32 Convolutional Neural Networks/247 How to get the dataset-tr.srt 4.84 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-tr.srt 4.84 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-tr.srt 4.84 KB
    36 Kernel PCA/272 How to get the dataset-tr.srt 4.84 KB
    38 Model Selection/276 How to get the dataset-tr.srt 4.84 KB
    39 XGBoost/282 How to get the dataset-tr.srt 4.84 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-es.srt 4.83 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-it.srt 4.82 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-pt.srt 4.81 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-es.srt 4.81 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-es.srt 4.81 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-pt.srt 4.78 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-it.srt 4.78 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-tr.srt 4.77 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-it.srt 4.77 KB
    15 Kernel SVM/106 Kernel SVM Intuition-es.srt 4.77 KB
    04 Simple Linear Regression/021 How to get the dataset-en.srt 4.76 KB
    05 Multiple Linear Regression/033 How to get the dataset-en.srt 4.76 KB
    06 Polynomial Regression/055 How to get the dataset-en.srt 4.76 KB
    07 Support Vector Regression (SVR)/066 How to get the dataset-en.srt 4.76 KB
    08 Decision Tree Regression/071 How to get the dataset-en.srt 4.76 KB
    09 Random Forest Regression/075 How to get the dataset-en.srt 4.76 KB
    12 Logistic Regression/085 How to get the dataset-en.srt 4.76 KB
    13 K-Nearest Neighbors (K-NN)/099 How to get the dataset-en.srt 4.76 KB
    14 Support Vector Machine (SVM)/103 How to get the dataset-en.srt 4.76 KB
    15 Kernel SVM/110 How to get the dataset-en.srt 4.76 KB
    16 Naive Bayes/117 How to get the dataset-en.srt 4.76 KB
    17 Decision Tree Classification/121 How to get the dataset-en.srt 4.76 KB
    18 Random Forest Classification/125 How to get the dataset-en.srt 4.76 KB
    21 K-Means Clustering/138 How to get the dataset-en.srt 4.76 KB
    22 Hierarchical Clustering/144 How to get the dataset-en.srt 4.76 KB
    24 Apriori/158 How to get the dataset-en.srt 4.76 KB
    25 Eclat/166 How to get the dataset-en.srt 4.76 KB
    27 Upper Confidence Bound (UCB)/171 How to get the dataset-en.srt 4.76 KB
    28 Thompson Sampling/182 How to get the dataset-en.srt 4.76 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/189 How to get the dataset-en.srt 4.76 KB
    31 Artificial Neural Networks/222 How to get the dataset-en.srt 4.76 KB
    32 Convolutional Neural Networks/247 How to get the dataset-en.srt 4.76 KB
    34 Principal Component Analysis (PCA)/261 How to get the dataset-en.srt 4.76 KB
    35 Linear Discriminant Analysis (LDA)/269 How to get the dataset-en.srt 4.76 KB
    36 Kernel PCA/272 How to get the dataset-en.srt 4.76 KB
    38 Model Selection/276 How to get the dataset-en.srt 4.76 KB
    39 XGBoost/282 How to get the dataset-en.srt 4.76 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-ja.srt 4.76 KB
    12 Logistic Regression/087 Logistic Regression in Python - Step 2-en.srt 4.73 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-pt.srt 4.72 KB
    15 Kernel SVM/106 Kernel SVM Intuition-it.srt 4.72 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-ja.srt 4.72 KB
    15 Kernel SVM/106 Kernel SVM Intuition-pt.srt 4.71 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-es.srt 4.7 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-pt.srt 4.7 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-ja.srt 4.68 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-tr.srt 4.66 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-it.srt 4.65 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-pt.srt 4.64 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-tr.srt 4.63 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-tr.srt 4.61 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-ja.srt 4.59 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-tr.srt 4.57 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-it.srt 4.57 KB
    32 Convolutional Neural Networks/255 CNN in Python - Step 8-en.srt 4.57 KB
    22 Hierarchical Clustering/152 HC in R - Step 3-en.srt 4.56 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-ja.srt 4.55 KB
    19 Evaluating Classification Models Performance/133 Conclusion of Part 3 - Classification.html 4.54 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-ja.srt 4.53 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-es.srt 4.52 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-es.srt 4.51 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-pt.srt 4.51 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/204 Natural Language Processing in R - Step 4-en.srt 4.49 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-pt.srt 4.47 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-en.srt 4.46 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-tr.srt 4.45 KB
    32 Convolutional Neural Networks/249 CNN in Python - Step 2-tr.srt 4.45 KB
    15 Kernel SVM/106 Kernel SVM Intuition-tr.srt 4.42 KB
    27 Upper Confidence Bound (UCB)/179 Upper Confidence Bound in R - Step 4-en.srt 4.41 KB
    15 Kernel SVM/106 Kernel SVM Intuition-en.srt 4.41 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-it.srt 4.4 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-ja.srt 4.39 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-ja.srt 4.39 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/195 Natural Language Processing in Python - Step 6-en.srt 4.39 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-tr.srt 4.36 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-pt.srt 4.34 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-es.srt 4.34 KB
    31 Artificial Neural Networks/229 ANN in Python - Step 6-en.srt 4.32 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-it.srt 4.3 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-tr.srt 4.29 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-es.srt 4.19 KB
    12 Logistic Regression/093 Logistic Regression in R - Step 2-en.srt 4.19 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-en.srt 4.18 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-es.srt 4.16 KB
    01 Welcome to the course/003 Important notes tips tricks for this course.html 4.16 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-it.srt 4.14 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-es.srt 4.13 KB
    04 Simple Linear Regression/024 Simple Linear Regression Intuition - Step 2-tr.srt 4.1 KB
    31 Artificial Neural Networks/214 Plan of attack-es.srt 4.1 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-es.srt 4.09 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-it.srt 4.08 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-pt.srt 4.08 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-pt.srt 4.08 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-pt.srt 4.07 KB
    10 Evaluating Regression Models Performance/082 Conclusion of Part 2 - Regression.html 4.06 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-pt.srt 4.06 KB
    31 Artificial Neural Networks/214 Plan of attack-tr.srt 4.04 KB
    31 Artificial Neural Networks/214 Plan of attack-pt.srt 4.03 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-pt.srt 4.02 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-es.srt 4 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-it.srt 4 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-it.srt 4 KB
    31 Artificial Neural Networks/214 Plan of attack-en.srt 4 KB
    31 Artificial Neural Networks/214 Plan of attack-it.srt 3.98 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-es.srt 3.98 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-tr.srt 3.97 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-tr.srt 3.95 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-en.srt 3.94 KB
    12 Logistic Regression/088 Logistic Regression in Python - Step 3-en.srt 3.93 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-pt.srt 3.91 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-en.srt 3.91 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-it.srt 3.9 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-tr.srt 3.89 KB
    22 Hierarchical Clustering/154 HC in R - Step 5-en.srt 3.89 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-it.srt 3.89 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-pt.srt 3.89 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-es.srt 3.88 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-ja.srt 3.87 KB
    04 Simple Linear Regression/022 Dataset Business Problem Description-tr.srt 3.86 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-it.srt 3.85 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-en.srt 3.82 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-tr.srt 3.81 KB
    05 Multiple Linear Regression/042 Multiple Linear Regression in Python - Step 2-tr.srt 3.8 KB
    12 Logistic Regression/095 Logistic Regression in R - Step 4-tr.srt 3.75 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-ja.srt 3.74 KB
    31 Artificial Neural Networks/227 ANN in Python - Step 4-en.srt 3.71 KB
    22 Hierarchical Clustering/153 HC in R - Step 4-en.srt 3.7 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-pt.srt 3.54 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-es.srt 3.48 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-es.srt 3.46 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-ja.srt 3.45 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-tr.srt 3.44 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-it.srt 3.41 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-pt.srt 3.41 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-en.srt 3.38 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-it.srt 3.36 KB
    05 Multiple Linear Regression/038 Multiple Linear Regression Intuition - Step 4-tr.srt 3.36 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/205 Natural Language Processing in R - Step 5-en.srt 3.25 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-es.srt 3.24 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-it.srt 3.23 KB
    32 Convolutional Neural Networks/258 CNN in R.html 3.21 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-pt.srt 3.2 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-en.srt 3.12 KB
    19 Evaluating Classification Models Performance/130 Accuracy Paradox-tr.srt 3.11 KB
    05 Multiple Linear Regression/047 Multiple Linear Regression in Python - Automatic Backward Elimination.html 3.02 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-ja.srt 2.97 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-ja.srt 2.96 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-ja.srt 2.91 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-es.srt 2.69 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-tr.srt 2.69 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-es.srt 2.67 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-pt.srt 2.66 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-it.srt 2.65 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-pt.srt 2.65 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-pt.srt 2.64 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-it.srt 2.61 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-es.srt 2.6 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-it.srt 2.58 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-tr.srt 2.55 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/187 Welcome to Part 7 - Natural Language Processing.html 2.55 KB
    32 Convolutional Neural Networks/243 Step 3 - Flattening-en.srt 2.54 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-tr.srt 2.52 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/192 Natural Language Processing in Python - Step 3-en.srt 2.49 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/009 Welcome to Part 1 - Data Preprocessing-en.srt 2.43 KB
    01 Welcome to the course/004 This PDF resource will help you a lot.html 2.35 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/013 For Python learners summary of Object-oriented programming classes objects.html 2.3 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/211 Homework Challenge.html 2.23 KB
    29 -------------------- Part 7 Natural Language Processing --------------------/200 Homework Challenge.html 2.21 KB
    01 Welcome to the course/006 Update Recommended Anaconda Version.html 2.17 KB
    33 -------------------- Part 9 Dimensionality Reduction --------------------/259 Welcome to Part 9 - Dimensionality Reduction.html 2.12 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-ja.srt 1.95 KB
    01 Welcome to the course/008 BONUS Meet your instructors.html 1.89 KB
    37 -------------------- Part 10 Model Selection Boosting --------------------/275 Welcome to Part 10 - Model Selection Boosting.html 1.74 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-tr.srt 1.74 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-es.srt 1.72 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-it.srt 1.71 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-pt.srt 1.71 KB
    30 -------------------- Part 8 Deep Learning --------------------/212 Welcome to Part 8 - Deep Learning.html 1.7 KB
    03 -------------------- Part 2 Regression --------------------/020 Welcome to Part 2 - Regression.html 1.69 KB
    11 -------------------- Part 3 Classification --------------------/083 Welcome to Part 3 - Classification.html 1.66 KB
    32 Convolutional Neural Networks/250 CNN in Python - Step 3-en.srt 1.65 KB
    26 -------------------- Part 6 Reinforcement Learning --------------------/168 Welcome to Part 6 - Reinforcement Learning.html 1.65 KB
    02 -------------------- Part 1 Data Preprocessing --------------------/016 WARNING - Update.html 1.6 KB
    05 Multiple Linear Regression/053 Multiple Linear Regression in R - Automatic Backward Elimination.html 1.59 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-ja.srt 1.59 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-es.srt 1.57 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-ja.srt 1.55 KB
    20 -------------------- Part 4 Clustering --------------------/134 Welcome to Part 4 - Clustering.html 1.55 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-tr.srt 1.54 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-pt.srt 1.53 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-en.srt 1.52 KB
    05 Multiple Linear Regression/039 Prerequisites What is the P-Value.html 1.49 KB
    05 Multiple Linear Regression/035 Multiple Linear Regression Intuition - Step 1-it.srt 1.49 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-pt.srt 1.49 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-tr.srt 1.43 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-es.srt 1.42 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-it.srt 1.41 KB
    05 Multiple Linear Regression/036 Multiple Linear Regression Intuition - Step 2-en.srt 1.4 KB
    22 Hierarchical Clustering/155 Conclusion of Part 4 - Clustering.html 1.35 KB
    23 -------------------- Part 5 Association Rule Learning --------------------/156 Welcome to Part 5 - Association Rule Learning.html 1.27 KB
    udemycoursedownloader.com.url 132 B
    Udemy Course downloader.txt 94 B

Download Info

  • Tips

    “[UdemyCourseDownloader] Machine Learning A-Z™ Hands-On Python & R In Data Science” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.